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Abstract

We present a validation study of a Chebyshev multidomain
staggered-grid method! (CMSM) for numerical simulation
of three-dimensional compressible turbulent flows. Compu-
tations with CMSM of an isotropic turbulence and a fully-
developed turbulent channel flow are compared with pre-
viously published results. Turbulence initiation issues are
discussed and resolution requirements are assessed at a min-
imum of three to six points per wave number for a polynomial
approximation of ten to thirteen.

Nomenclature

Cp specific heat
e energy flux

E(k) energy spectrum

F,G, H flux vector in x, y and z directions

hj Lagrangian polynomial on Gauss grid

i the complex number /—1

J Jacobian

k wave number

l; Lagrangian polynomial on Lobatto grid
L non-dimensional length

Ly reference length

M; Uy //vRTy reference Mach number

Ma ucter/\/T Mach number

N number of grid points per subdomain in each
directions
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P pT[yM3 pressure

Py Space of polynomials of degree less than or
equal to NV

Pr Cpp/k Prandtl number

o) approximation order

Q vector of solution unknowns

R gas constant

Rey psUsLy [ reference Reynolds number
t time

T temperature

u,v,w velocity in z, y and 2z directions

Uy skin friction velocity

Uy reference velocity

x,1y,z spatial coordinate in x, y and z directions

X,Y,Z spatial coordinate in X, Y and Z directions
in mapped space
Greek symbols

5y ratio of the specific heats

€ turbulence dissipation

K thermal conductivity

" viscosity

p density

T shear stress

10) uniformly random generated number
w vorticity

Subscripts

d dillatational

rms root mean square

s solenoidal

t derivative with respect to ¢

x,y,z derivative with respect to z, y and z

X,Y, Z derivative with respect to X, Y and Z

Superscripts
a advective flux
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v viscous flux

- vector

mapped space variable

Favre averaged property

- Reynolds averaged property
Reynolds fluctuating property
Favre fluctuating property

+ normalized with wall coordinate

Introduction

In the last two decades direct numerical simulation (DNS)
has become a viable research tool for the study of low and
moderate Reynolds number turbulent flows. It has helped
increase the physical understanding of various flows. DNS
results has also supplied a large database for model develop-
ment and validation.

At first sight, DNS appears to be a simple procedure since
the Navier-Stokes equations are discretized directly without
the use of turbulence models. However, the turbulence at
Reynolds numbers that are relevant to engineering applica-
tions has a large range of scales. This means that compu-
tation of such flows with a standard low-order CFD scheme,
whose errors are typically dominated by large dispersion an
dissipation errors, would require an unrealistically large num-
ber of grid points.

To reduce the problem size, high-order methods that can
resolve small scales efficiently are needed for DNS. The re-
search efforts into these kinds of methods are numerous (see
e.g. Moin and Mahesh? for a review), and involve many
related issues such as treatment of boundary conditions, it-
eration schemes and multidomain methods. In our ongoing
research effort>* we are developing a Chebyshev multido-
main spectral method (CMSM)! for DNS. It is spectrally
accurate, has low dispersion and it can deal with complex
geometries.

In this paper we asses resolution requirements and discuss
initialization issues for benchmark simulations of isotropic
decaying turbulence and the turbulent flow in a channel with
CMSM.

In the remainder of this paper, we first present the govern-
ing equations and discuss the numerical methodology. Then,
initialization of the isotropic turbulence for CMSM is pre-
sented, followed by a comparison of results between CMSM
simulations and simulations with a Fourier spectral method
presented in Blaisdell et al.> Then the channel flow initial-
ization is discussed, followed by a comparison of the results
between CMSM simulations and simulations in Moser et al.
with a spectral method.

Governing Equations

We consider a compressible and Newtonian fluid with zero
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bulk viscosity that obeys the perfect gas equation of state.
The Navier-Stokes equations in dimensionless, conservation
form for the fluid are

Y A L . 1 - = .

Qi+ Fy +Gy+ H, = R—W(Fz" +Gy+HY). (1)
The equations for § = [p, pu, pv, pw, pe] represent conserva-
tion of mass, momentum (in three directions) and energy, re-
spectively. F', G, and H represent the advective (superscript
’a’) and viscous (superscript *v’) fluxes in three directions.
pe = =3 + p(u® + v® +w?)/2 is the sum of the internal and

kinetic energy. The equation of state is p = pT/yM]%. All of
the variables are normalized by reference length (L), density
(py), velocity (Uy), and temperature (Ty) scales. The refer-
ence Reynolds, Mach and Prandtl numbers are defined by
Res = psUsLy/u, My = Uy /(yRTy)'/? and Pr = Cpu/k,
respectively.

Numerical Methodology

The computational methodology is described in detail in
Refs. 1 and 7; this section provides a summary. The approx-
imation begins with the subdivision of the region under con-
sideration into non-overlapping quadrilateral subdomains, or
elements. Each element is then mapped onto a unit square
by an isoparametric transformation using the linear blending
formula. Under the mappings, (1) becomes

Qi+ Fx +Gy + Hy =0, (2)
where
Q J@q,
F = X,F+X,G+X.H,
G = Y, F+v,G+VY.H,
H = Z,F+2,G+Z.H. (3)

Within an element the solution values, @, and the fluxes F,
G and H in (2) are approximated on separate grids. These
grids are tensor products of the Lobatto grid, X;, and the
Gauss grid, X /2, mapped onto [0, 1]:

Xj= (l-cos(fm)) i=
3 (1 —cos (25m))

N,

Xiy1/2 = .., N—1.(4)
On these grids the Lagrange interpolating polynomials
1;(§) € Px and hji1/5(§) € Py_1 are defined. Together
with the choice of collocation points in equation (4), these
polynomials represent a Chebyshev approximation on each
grid. The motivation for the staggered grid is that polyno-
mial approximations of degree N that are to be differentiated
once are represented on a Lobatto grid. Other quantities
are of degree N — 1, and are represented on a Gauss grid.
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Thus solution unknowns are collocated at Gauss points while
fluxes are collocated at Lobatto points. The solution is de-
noted by:

N—-1N-1N-1

Z Z Z Qi+1/2,j+1/2,k+1/2

=0 7=0 k=
hiy1/2(X )h,7+1/2( Yhki1/2(Z). (5)

(From this polynomial, the solution values are computed at
the Lobatto points. Although the solutions at the Lobatto
points still describe a polynomial in Py_;, application of
boundary and interface conditions add the extra degree of
freedom to increase the polynomial order.

Q(X,Y,2)

The inviscid fluxes are determined by evaluating the inter-
polant from (5) at the desired Lobatto and Lobatto points.
At points interior to the element, the fluxes are computed di-
rectly. Along element faces, a Roe solver® is used to compute
the flux using two solutions from the current and neighboring
elements.

The computation of the viscous flux uses a two-step pro-
cedure. Since the reconstruction of the solution from the
Gauss points onto the Lobatto points gives a discontinuous
solution at the element faces, it is necessary to construct first
a continuous piecewise polynomial approximation before dif-
ferentiating. To construct the continuous approximation, the
average of the solutions on either side of the interface is used
as the interface value. The continuous solution is then dif-
ferentiated to get the derivative quantities needed for the
viscous fluxes. Since differentiation reduces the polynomial
order by one, it is natural then to evaluate the differentiated
quantities on the Gauss grid. Once the derivative quantities
are evaluated at the Gauss points, a polynomial interpolant
of the form (5) is defined, so that the gradients can be eval-
uated at the Lobatto points. From the cell face values, the
viscous flux are computed and combined with the inviscid
fluxes to obtain the total flux.

Note that evaluating the gradients at the cell centers has two
desired effects. First, it makes the evaluation of the diver-
gence consistent with that used in the continuity equation.
Second, the evaluation of the viscous fluxes will not require
the use of subdomain corner points.

Boundary Conditions

Since only an isothermal wall boundary condition is used for
simulation in this paper, we will restrict our discussion to
this boundary condition treatment.

Isothermal wall boundaries. At solid wall boundaries, no-slip
conditions are imposed for the velocity and an isothermal
condition for the temperature. As before, the computa-
tions of the viscous and inviscid fluxes are treated sepa-
rately. The no-slip condition is enforced on the inviscid
flux by imposing a flow on the other side of the wall with
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equal but opposite velocity. Since the wall is isothermal,
the internal energy is set using the wall boundary tempera-
ture. Thus, if the evaluation of (5) at a vertical wall point
(Xo,Yj411/2) gives Cjo,j+1/2 = [p, P%P%Pe]g,jﬂ/z the exter-
nal state Q. = [p, —pu, —pv, pe]” is defined, where peg ;11,2
is given by pTwau/[v(y — 1)M7] + [(pu)* + (pv)?]/2p. The
advective flux is then determined with an Osher solver. The
viscous flux at a wall is computed in two stages, as described
above. After the solution is reconstructed at the cell faces,
the Dirichlet conditions pug j1/2 = pvo j1/2 = 0 are set. If
the wall is isothermal, then Tg ;12 = Twau is set. After the
quantities Vu, Vv, VT are interpolated back onto the faces,
the viscous flux is added to the advective flux to obtain the
total flux.

Isotropic turbulence

In this section we repeat a simulation of isotropic decay-
ing turbulence that was performed in Ref. 5 with a Fourier
pseudo-spectral method. The purpose is twofold. Firstly, it
provides a rigorous code testing for the simulation of com-
pressible turbulence with CMSM. Secondly, an indication of
resolution requirements for DNS of turbulent flow is obtained
through comparison with the results of the well-established
Fourier spectral method.

Initial Conditions

The simulation of isotropic turbulence is performed in a cube
with periodic boundary conditions, which eliminates issues
involved in specifying boundary conditions. The absence of
specified boundary conditions, however, introduces the prob-
lem of generating turbulence, since no turbulent fluctuations
can be specified at an inflow boundary. In addition, the simu-
lation of decaying turbulence by definition lacks the presence
of a source term that could generate turbulence.

Rogallo,? Blaisdell et al.,’> referred to as BMR in this sec-
tion, found a solution to this problem by specifying initial
conditions that produce a correlated flow field with turbu-
lent characteristics from specified initial energy spectra. For
brevity the details of this procedure are not repeated here.
Rather, the equations involved and the case referred to as
“iga96” in BMR is presented here.

Initial conditions were produced by specifying initial
solenoidal velocity (Es), and dilatational velocity (Ey), den-
sity (E,), and temperature (Er) spectra. All spectra
are tophat and have a constant non-zero contribution to
wavenumbers between k=8 and k=16. The amplitude in
this range is constant, but differs for the various spectra. For
case “iga96” in BMR the amplitude for the various spectra
is given in Table 1.

The Fourier coefficients for the solenoidal velocity field can

American Institute of Aeronautics and Astronautics



be determined from the spectra as follows,

R aren kk2+ﬂ'r~an k1ks
i) | [ S

05 (k) =] B8 2 kak;; 1 (6)
W (k) 7—ﬂ’”2 kg

arm = 4/ Z;—g:?eim cos(¢3) and BT = %r—(k'?eid’ﬁ sin(¢s3).
¢1, P2, and ¢3 are uniformly distributed randomly generated
numbers. i is the complex number /—1. k is the magnitude
of the wavenumber vector, (ki, k2, k3), and k12 is expressed
as \/k? + k3. If k12 = 0 then 4 = o™, and & = 87%". The
dilatational velocity Fourier coefficients are given by

aq(k) vk, [k
va(k) | = | V" "k2/k |, (M)
Wa(k) Y k3 [k

ran E

where 77" = \/#Sc@eid"‘. ¢4 is a uniformly distributed
randomly generated number. The density and temperature
Fourier coeflicients are determined with

: ) i

p(k) - 47rk26 Y

. Br(k) ;

Py = T e, ®

where ¢4, and ¢g are again uniformly distributed randomly
generated numbers.

The initial data is defined on the equi-distant grid with co-
ordinates, z; = (l; —1)Ly/N, 1; =1,...,N, and wavenum-
bers, k; 22—?1', n; = —=N/2+1,...,N/2, in each di-
rection, ¢=1,2,3. Choosing the reference length, L;=2m, a
three-dimensional discrete Fourier transform can be assem-
bled from the coefficients in (6), (7), and (8). to deteremine
the flow field for u, v, w, p, and T at the equidistant Fourier
grid. The resulting flow field is correlated according to the
tophat spectrum.

CMSM employs a Chebyshev grid for simulations. The initial
flow field at these points is obtained by performing an eighth-
order Lagrangian interpolation on the Fourier grid. To verify
whether this interpolation provided sufficient accuracy, the
initial flow field was interpolated back to the Fourier grid
using spectral interpolation within each element. The energy
spectra were determined by applying a Fourier transform on
the interpolated values. These spectra were compared to the
spectra obtained with the original Fourier expansion.

Figure 1 compares the spectra for a N=64 Fourier expansion
and a CMSM grid with 6 equi-distant domains in each di-
rection and approximation orders of p=9 and 13 on a linear
scale (Fig. 1a) and a log scale (Fig. 1b). From Figure 1a it
follows that interpolation leads to a 2% underestimation of
the amplitude between k=8 and 16 compared to the original
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Fourier expansion for both approximation orders in CMSM.
Both polynomial approximation orders show the same ac-
curacy, which indicates that the difference with the original
Fourier expansion is in a large part caused by the eighth-
order interpolation to the nonuniform grid.

In the range for k < 8 and k > 16, the log scale shows that
p=13 is two orders of magnitude closer to the expected value
of zero than p=9. These two orders of magnitude reduction
are not conform spectral convergence, but it is expected that
the error in this region is limited by the eight-order interpo-
lation from the Fourier grid to the Chebyshev grid. The
Fourier expansion clearly has better performance than p=13
by approximating the spectrum 9 orders of magnitude closer
to zero. We are, however, not concerned with this differ-
ence, since in comparison to the amplitude of the spectrum
of 3.125 x 10~*, the values outside the interval are negligible
in all cases.

Simulations

Simulations are performed on a domain with length 27 and
with periodic boundary conditions in each direction. The
computational domain is divided into six equi-extent do-
mains in each direction. Two polynomial orders, p=9 and 13,
have been tested. The initial conditions are set as described
above. The average initial temperature is T,=1.0, which
leads to an initial fluctuation Mach number, May=0.05.

May is defined as,
Mag = \/uu}l/c(To), (9)

which is written in index notation. The double prime in-
dicates a fluctuating Favre variable. ¢(T') is the speed of
sound based on the average temperature. The computational
Reynolds number, Rey is set to 2357.

The results, obtained by integrating from the initial flow
state, are compared to BMR, who used a N=96 Fourier
spectral method. Figure 2 compares the turbulence kinetic
energy (TKE), TKE = 1/2u}u!, versus time for the three
cases. It is observed that the TKEs are in good agreement
for all three cases. The TKE shows the well-known expo-
nential decay'® in time, which is due to dissipation. The
wavy pattern of TKE is a result of the exchange between the
kinetic energy and the internal acoustic energy, also known
as pressure-dilatation.'! The good prediction of TKE even
by the low order CMSM is surprising, but as mentioned in
Ref. 2 TKE is generally predicted well, even by lower order
methods.

A better measure of CMSM’s performance is given by com-
paring the evolution of the dissipation rate, €, with time. In
compressible turbulence, the solenoidal, €,, and dilatational,
€4, are the two major contributors to the total dissipation,
€. Other higher order contributions turn out to be zero for
homogeneous turbulence. Thus, € may be expressed as the
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sum of €; and €4,

1 — 4 1 oulOuf

B Rl Mt
Refw’w’+3Ref dz; Ox;’

€ =

€s €d (10)
where w} is the fluid vorticity fluctuation. Figure 3 shows
that the results for p=9 clearly underpredicts € over the en-
tire simulation time as compared to BMR. The results for
=13, however, indicate good comparison. Inspection of the
€s and €4 contributions to € shows, that the main difference
between the two CMSM cases is in the prediction of €5. The
simulation with p=9 is not able to capture acoustic waves
with high frequency, which leads to an underestimation of eg4.
Increasing the approximation order to p=13 leads to a sig-
nificant increase of the dilatational dissipation, while €, de-
creases slightly. Since e agrees well with BMR, it is assumed
that the flow is resolved well enough. Figure 4 confirms that
»=9 does not capture the acoustic waves well, since both
the pressure variance, p'p’/(y?p®), and the density variance
p'p'/(p?), are underestimated over the whole time interval.
The case with p=13 again performs far better, and approx-
imates BMR’s solution well.

Figure 5 shows the energy spectra for both CMSM cases at
t=3.0 and 7.5. Unfortunately, no data for BMR’s case is
available for comparison. The figure shows that the energy
spectra are similar for wave numbers up to k ~ 16. Since
TKE is half the integrated area under the E(k) curve, and
since the magnitude of this integral is mainly determined
by the contribution of E(k) up to k=16, the similarity of the
spectra explains the similarity of the TKE trend for p=9 and
13 in Fig. 2. At higher wave numbers, the case with p=13
shows increased energy compared to p=9. Since € may al-
ternatively be computed by integrating the area under the
curve k?2FE(k), also known as the dissipation spectrum, and
since E(k) at high k contributes significantly to the integral
due to the k% term, the increased amplitude in the energy
spectrum for k > 16 explains the difference in e. Computing
€ from the dissipation spectrum offers a means to study res-
olution by inspecting the energy spectrum at large k. If the
spectrum shows a sharp drop off at large k this indicates that
most dissipation is captured, as the contribution of E(k) in
the dissipation spectrum will be small. Memory limitations
restrict the computation of the spectrum to k=30, but E(k)
clearly shows a sharp drop up to k=30 for =13, whereas
p=9 flattens out at higher wave numbers.

An interesting feature of the spectrum is that, unlike what
one would expect, the spectrum does not fill out at low wave
numbers. In BMR this was explained through the associa-
tion of vorticity with the solenoidal velocity field, and the
acoustic mode with the dilatational velocity field: Vorticity
has both a mechanism for generating large scales through
vortex stretching and smaller length scales through vortex
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merging. The solenoidal spectrum thus fills out at both low
and high wavenumbers. The acoustic mode, however, has
only a mechanism for filling out the high wave number di-
latation spectrum through nonlinear steepening of acoustic
waves. In this particular computation, it is clear from the dis-
sipation spectrum, that dilatation dominates and determines
the spectrum at k& > 16 for a large part, thus explaining the
relatively small filling of the spectrum at low wavenumbers.

In order to verify the spectrum, TKE is computed with E(k)
as explained above and compared with the direct computa-
tion of TKE for p=13. Figure 6 shows, that the TKE com-
puted from the spectrum is slightly smaller than the TKE
computed directly. The difference, however, is small and at-
tributed to the cutoff of E(k) at k=30. The good comparison
of the TKEs indicates a correct energy spectrum trend.

In conclusion p=13 resolves the flow significantly better than
9=9. p=13 compares well with BMR, who used a Fourier
spectral method with N=96. The good drop off in the energy
spectrum at k=30 suggests that at p=13, 90 Lobatto points
(6 domains times 15 Lobatto points) resolve the flow, i.e.
90/30=3 points per wavenumber.

Channel Flow

This section presents results on the compressible flow be-
tween parallel plates, also known as channel flow. For in-
compressible flow, the Navier-Stokes simulations (without
models) have been quite extensive. Some of the key works
include Kim et al.,'?> who performed DNS of the fully tur-
bulent flow at Rey=3300. They found excellent comparison
of the mean flow and first order moments with experimen-
tal data and theoretical models, such as the “universal law
of the wall.” Jimenez and Moin'? investigated the minimal
computational domain necessary to sustain turbulence in the
channel flow. They observed longitudinal vortex structures,
which they related to the so-called high-speed streaks near
the wall. Moser et al.® performed studies at higher Reynolds
number including simulations at the Reynolds number based
on the skin friction velocity of Re,.=200, 500, and 700. In
Ref. 14 a resolution study with a spectral element method
was employed on the configuration in Ref. 13.

The DNS on compressible channel flow was initiated by
Huang et al.'5 They performed DNS on the supersonic chan-
nel flow at two different Reynolds numbers and found that
compressibility effects are limited to inertial effects, which
are small. Recently some studies have appeared in literature
for subsonic flow, which were mainly used for code or model
verification, e.g. Gamet et al.'® and Lenormand et al.'”

In this section, the subsonic compressible channel flow is
simulated at a Reynolds number of Re;=3000 based on the
channel half width, Ly, and the average velocity in the chan-
nel, uy. The Mach number May is chosen to be 0.4 and it
is based on the bulk velocity up, and the wall temperature
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Twau- The purpose of the simulation is to validate and to
asses resolution requirements for simulations with CMSM in
an inhomogeneous turbulent flow.

Computational Model

Our simulations follow the computational model outlined in
Ref. 14 for the DNS of the incompressible channel flow with
a spectral element method. The geometry is represented by
a rectangle with non-dimensional lengths, L,=2, L,=2, and
L,=4 in the wall normal, spanwise, and streamwise direc-
tions, respectively. In Ref. 14 a grid of 12 elements in the
wall normal direction, 10 elements in the spanwise periodic
direction, and a N=64 Fourier expansion in the streamwise
periodic direction, was employed. In Ref. 14 the element
distribution in the wall normal direction is of a cosine form
to account for the higher flow gradients near the wall. In
the periodic directions a uniform grid is employed. In the
simulation presented here the same element distribution is
employed. However, CMSM is used for the approximation
in the streamwise direction as opposed to the Fourier spectral
method in Ref. 14. Based upon simulations in the previous
section on the isotropic turbulence, a 10 domain grid distri-
bution was chosen for simulation with CMSM to obtain a
resolution similar to the Fourier grid resolution in Ref. 14.
To achieve a resolved flow it was shown in Ref. 14 that a
polynomial approximation of =10 is sufficient. This sec-
tion presents results for p=6 and 10.

Periodicity in the streamwise direction is not trivial, since
in the channel flow a negative pressure gradient sustains the
flow, which means a non-periodic inhomogeneity. It can be
shown by integration of the Navier-Stokes equations over the
width of the channel, that specifying a constant source term
leads to a mass flux that is time-dependent (Lenormand et
al.}™). This makes the analysis of the flow at a constant
Reynolds number impossible. In order for the mass flux to
be time-independent, it was shown that the forcing term has
to be time dependent. The algorithm presented in Ref. 17
for maintaining a constant mass force is employed here as
well. The wall boundary condition is set as isothermal.

Initiation and Transition to Turbulence

The velocity field is initialized with the laminar parabolic
Poiseuille profile with a random disturbance in the stream-
wise velocity, as,

ut) =6 |(4)" -4 a+a, (11)

where € is a 10% random disturbance. The random distur-
bance is introduced to accelerate the transition to a turbulent
flow. For the temperature, the laminar Poiseuille profile is
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initially specified as,

T(y) = Twau + {B(ZT;’D

1--v7} @
where T4y is the wall temperature. The density is initially
set constant. The pressure follows from the constant density,
the initial temperature and the ideal gas law.

With this initial flow field and the resolution described in
the previous section, the initial disturbance damps out at
the intended Reynolds number of Rey=3000 and the flow
returns to its laminar state. Increasing the Reynolds num-
ber to Rey=6000 to force transition does not lead to tran-
sition within computational times that are feasible. Rather
than increasing the Reynolds number even more, the flow
is simulated at a lower resolution of =2 in the hope that
truncation error of the scheme acts as a sufficiently large dis-
turbance required for transition. From Fig. 7, which shows
the average skin friction coefficient, c¢, plotted versus time,
it is observed that this approach works: Up to time, ¢t ~20
the flow maintains its laminar skin friction coefficient of
¢y = 3/Rey=0.001, but for times ¢ >20, ¢y increases indicat-
ing transition. At time ¢ ~80, c¢; levels off at the expected
turbulent ¢y of approximately 0.042. Through interpolation
of the solution at p=2 at four times two incrementals of p
and consequently simulating for short times, a turbulent ini-
tial condition for the simulation at p=10 is specified. Results
of the quasi-steady state channel flow obtained by simulating
from this initial condition are presented in the next section.

Simulations

The results of the simulations are presented for p=6, and
=10 and are compared to the results of Moser et al. 1999
(MKM).

Instantaneous flow field

Figure 8 shows the u-velocity contours close to the wall at
2z=0.01. Clearly visible is the streaky pattern observed in
other works (e.g. Refs. 10,12,13) that is caused by the long
vorticial structures. Three high speed and low speed streaks
may be observed. An approximate separation of the streaks
is 0.33 in y-direction, which is computed as the ratio of the
two length units width of the computational domain over
the six number of streaks. This separation is in good agree-
ment with Ref. 12, where the separation was reported to be
0.3. In Fig. 9, the longitudinal vortices are visualized by
temperature iso-contours colored with the wu-velocity. The
distance between these two long vortices is approximately
0.5 in y-direction, again showing a good agreement with the
reported value of 0.5 in Ref. 12.

Comparison of average flow field

The Favre averaged velocity scaled with the skin friction ve-
locity, ut, plotted versus the wall normal coordinate, z, for
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=06 and p=10 is shown in Fig. 10a. Here, the skin friction
velocity, u,, is defined as

_ [ Twall
Ur = 0

Pwall
where Tyqu and pyeu are the average shear stress and density
at the wall, respectively. It is observed that increasing the
polynomial order leads to a closer agreement with MKM'’s
results. At p=6 the skin friction velocity is underpredicted.
Furthermore, the solution is slightly asymmetric due to the
upwinding properties of the Roe solver. At =10 the solution
shows increased symmetry. The skin friction velocity, u.,, is
0.062, within 3% agreement of Dean’s correlation'® of 0.064.
In Fig. 10b, the same velocity u™ is plotted versus the wall

coordinate z1, defined as,

(13)

2t = PwanZurRey (14)
It is observed that p=6 slightly overpredicts the average ve-
locity, but =10 is in excellent agreement with MKM’s re-
sults and the theoretical “law of the wall'®” given by,

ut =2t 2t <10

ut =25Inzt+55 27 >10 (15)

Figure 10c compares the averaged spanwise v velocity scaled
with u,, vt, plotted versus the wall normal coordinate for
=6 and 10 with MKM’s result. At the symmetry line the
vT velocity of MKM is not zero, whereas symmetry consider-
ations suggest a zero vT velocity. In MKM this discrepancy
was claimed to be an indication of the accuracy of the com-
putation. The error is on the order of 1% of the average
uT. CMSM predicts a symmetry vt slightly closer to the
zero symmetry value than MKM result. The trend of v™,
however, shows differences with MKM, which most likely re-
sult from the different approximation in streamwise direction
through CMSM here versus the Fourier spectral method in
MKM. Increasing g from 6 to 10 decreases the peak values
of vt from 2% to 1% of the average ut velocity.

Figure 10d shows the averaged density, p, for both polyno-
mial orders. Since MKM’s simulations are incompressible no
comparison with MKM is available. It is observed that there
is approximately a 2.3% increase in density near the wall for
May=0.4, indicating a relatively small effect of compress-
ibility. Increasing g from 6 to 10 leads to less than 0.02%
difference in the density distribution.

Comparison of turbulence statistics

Figure 11 shows that the Favre fluctuating root mean square
velocity components, normalized with u., compare well for
=10 with the results presented in MKM. At =6 the main

discrepancy is in the peak value of u!} . However, the trends

7

for the various rms components are comparable. A similar
conclusion may be drawn for the off-diagonal Reynolds stress

— +
component u"w"  for p=6 presented in Fig. 12, which shows
an overprediction of its peak value close to the wall as com-

— +
pared to MKM. It is observed that the overpredicted u''w"
near the wall is compensated for further away from the wall,

1. . .
where u"w"  is underpredicted. This discrepancy seems to

—
be related to the positive values of u’v” , which should the-

— +
oretically be zero. The positive u'v" is in turn most likely
related to the aforementioned asymmetry in the u-velocity

profile. At p=10, the asymmetry is far less, but the uT’\u/)”Jr
Reynolds stress component is still larger than the result pre-
dicted by MKM. However, for =10 no compensation further
away from the wall is observed like for p=6. Furthermore,

— +

u"v" is much closer to its theoretical zero value than for
p=6. Results from incompressible DNS simulations in Ref.
12 and experimental measurements in Ref. 19 indicate that

— +
u"v" " may be larger than that predicted by MKM: for exam-

—
ple, Ref. 19 predicts peak values of u'v" = —0.78, which is
comparable to the peak value of —0.79 predicted by CMSM.

Finally, as a good measure of the resolution in Fig. 13, we
plot the solenoidal part of the dissipation (10) normalized
with uw,-. It is noted that the dilatational terms and terms
that appear due to inhomogeneity in the dissipation rate do
not exceed 1% of the peak value of the solenoidal dissipa-
tion, confirming the relative small influence of dilatation on
the compressible channel flow. As in the isotropic turbu-
lence, the lower order polynomial underpredicts dissipation,
whereas the result for p=10 underpredicts the dissipation
less. Furthermore at =10, the trends are the same, and
the skin friction is expected to be lower due to the increased
density near the wall. The main difference between p=6 and
g=10 is found near the wall where =6 is not able to capture
the high velocity gradient in the viscous sublayer as well as
»=10.

Assessment of resolution

In conclusion, the results at p=10 compare well to MKM’s
results and expected channel behavior. MKM reported good
drop off in the one-dimensional streamwise and spanwise
spectra at wavenumbers k; =30 and k, =90, respectively. The
stream and spanwise dimensions of the computational do-
main in our simulation are L;=4 an L,=2, i.e. the number
of waves at the drop off wave numbers in our domain are
L,k,/27n=19 and Lyk,/27=28. In both directions 120 Lo-
batto points are used to resolve the flow. Thus a resolution of
6 and 4 points per wavenumber (ratio of the number of waves
in the domain over the number of Lobatto points) sufficiently
resolves the flow in stream and spanwise direction.

Conclusions

To initiate the DNS study of three-dimensional compressible
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turbulent flows with multidomain spectral methods, simula-
tions are conducted in the setting of an isotropic decaying
turbulence for purposes of code validation and assessment
of resolution requirements. The initial conditions are deter-
mined on a Fourier grid in the wave space, and the physical
flow field is determined through a Fourier transform. The
physical flow field interpolated to the Chebyshev grid with
an eighth-order Lagrangian interpolation scheme provides an
accurate initial turbulence. Six domains with a polynomial
order approximation, =13, in each direction resolves the
flow comparably well to a Fourier spectral method, with
N=96.

For further validation of the code and assessment of resolu-
tion requirements for CMSM in inhomogeneous turbulence,
a fully turbulent channel flow simulation is performed at
Reynolds and Mach numbers of Re;y = 3000 and May = 0.4,
respectively, based on the channel half width, the bulk veloc-
ity and the wall temperature. Transition to turbulence from
the laminar initial state is obtained by simulating at low res-
olution, such that the round off errors of the scheme intro-
duced the flow disturbances required for transition. By inter-
polating the result to a grid with a higher order polynomial
and continuing the simulation, the resolved resolution result
is obtained. If the high resolution is employed from the initial
time, transition from the laminar initial state does not occur
within feasible computational times for Reynolds numbers
up to Rey = 6000. Comparison of the turbulent statistics
shows excellent agreement with previously published results.
Compressibility effects at this Mach number are limited to
a 2% increase in the averaged density near the wall and a
maximum 1% contribution of the non-solenoidal dissipation
terms to the total dissipation.
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Figure 1: Comparison of the initial energy spectrum in
isotropic turbulence for BMR, and CMSM, p=9 and p=13
on a linear (a), and a log (b) scale.
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Figure 2: Comparison of the turbulence kinetic energy
(TKE) versus time, t, in isotropic turbulence for BMR and
CMSM, p=9 and p=13.
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Figure 3: Comparison of the turbulence dissipation rate, e,
versus time, ¢, in isotropic turbulence for BMR and CMSM,
with =9 and p=13. For CMSM the contributions of both
the solenoidal, €,, and dilatational, €4, dissipation rates are
also shown.
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Figure 4: Comparison of the pressure variance, p'p’/(v?p?),
and the density variance, p'p'/(p*), versus time, ¢, in
isotropic turbulence for BMR and CMSM, p=9 and p=13.
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Figure 5: Comparison of the energy spectra, E(k), versus
the wave number, k, at t=3.0 and 7.5 for CMSM with p=9
and p=13 in isotropic turbulence.
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Figure 6: Comparison of the turbulent kinetic energy
(TKE) versus time, t, in isotropic turbulence computed with

0.5ufu, and 0.5 [~ E(k)dk for p=13.
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Figure 7: Skin friction coefficient, cy, plotted versus time, ¢,
showing transition to turbulence in a channel flow.
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Figure 8: Instantaneous streamwise u velocity contour at
2=0.01 in a channel flow for p=10.

Figure 9: Instantaneous temperature iso-contours in a chan-
nel flow colored with the streamwise u velocity component
for p=10.
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Figure 10: Various averaged flow variables in the channel
flow plotted in wall normal direction: ut plotted versus z
(a), and 2zt (b). vt plotted versus z (c). p plotted versus z
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Figure 11: Root mean square Favre fluctuation velocities

: 3 " 11 11 — —
normalized with w,, /it vt and w!'t  for p=6 and p=10,

compared with the Reynolds fluctuating velocities normal-

ized with u,, ult ., vt ~and wit . from MKM plotted versus

z in the channel flow.
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Figure 12: Favre averaged Reynolds stresses normalized with
Uy, u'w" " (a) , u"v" " (b) and v"w" Jr(b) compared with
the Reynolds averaged Reynolds stresses normalized with v,
vt (a), w0’ (b) and v’ (b) from MKM plotted versus
z in the channel flow.
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Figure 13: Reynolds averaged solenoidal dissipation rate,
er= Rlef wgwf for p=6 and p=10 compared with MKM plot-

ted versus z7.
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