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In this paper we discuss the development of a robust, high-order discontinuous Galerkin
(DG) spectral element method for large-eddy simulation (LES) of compressible flows. The
method secures geometrical flexibility through a fully unstructured grid (triangles in 2D
and tetrahedral elements in 3D), allows for arbitrary order of accuracy and has excellent
stability properties. An element based filtering technique is used in conjunction with
the dynamic procedure to model the effect of sub-grid scales. We aim to use the LES
methodology for large-scale simulation in geometrically complex dump combustors. As
a first step towards these simulations, we perform validation simulations of compressible,
turbulent flow in a plane channel with isothermal walls.

Nomenclature

A Filtering
Ã Favre filtered quantities
Cf Skin friction coefficient
Cp Specific heat capacity at constant pressure
Cv Specific heat capacity at constant volume
Cs Smagorinsky coefficient
cair Speed of sound in air
e Total energy per unit mass
k Thermal conductivity
Lf Reference length
Lα Lagrange interpolating polynomial
lk Filter coefficients
Ma Mach number
Mf Reference Mach number
M̂ Element mass matrix
N Number of nodes in each element
n Normal vector
n Polynomial order
Pr Prandtl Number
Prt Turbulent Prandtl number
p Thermodynamic pressure
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qj Heat flux vector
Re Reynolds number
Sij Rate of strain tensor
Ŝ Element stiffness matrix
T Temperature
U Mean streamwise velocity
U+ Friction velocity
Urms Streamwise RMS velocity
Uf Reference velocity
ui Velocity vector
V Vandermonde matrix
Vrms Normal RMS velocity

Greek
δij Kronecker delta
λ Eigenvalue
ρ Density
µ Viscosity
σij Viscous stress tensor
γ Cp/Cv

Subscript
f Reference values
i Coordinate direction
j Coordinate direction
α Matrix\vector index
β Matrix\vector index

Superscript
T Transpose
sgs Subgrid scale quantities

I. Introduction

Large-eddy simulation (LES) is a suitable technique for simulating a large class of complex flows (unsteady
flows, flows with large scale coherent structures, mixing and aero-acoustics). Under such circumstances they
are preferred over direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods.
DNS involves accurate solution of time dependent governing equations without any modeling. It is capable of
resolving all the temporal and spatial scales present in the flow and is therefore the ideal method for analyzing
the flow dynamics. However, huge computational expense of DNS makes it unsuitable for practical flows.
In RANS, on the other hand no attempt is made to resolve any of the turbulent motion, rather the net
effect of all the scales on the mean flow is modeled. RANS methods, though computationally efficient are
inadequate at capturing the true dynamics of the flow. They are generally used for predicting engineering
parameters like lift, drag, and characteristic frequencies for design. LES is based on the concept of scale
separation in turbulent flows: the large scales, which are anisotropic and sensitive to boundary conditions
are computed directly as in DNS, while the small scales that are more isotropic and universal are modeled.
They are superior to the RANS techniques at providing insight into the underlying physics. Moreover much
lower computational cost compared to DNS, makes them a suitable candidate for application to practical
flow studies.

Current high-order LES works rely mostly on spectral or compact finite difference1,2 methods on struc-
tured grids. While these methods have proven to be quite successful in providing insight into the physics
of turbulence in simple configurations, their limitations show up in practical flows that deal with arbitrarily
complex geometry. Dependence on structured grids limits geometric flexibility. Spectral methods guarantee
higher accuracy but impose severe restrictions on boundary conditions by requiring a periodic computational
domain. There have been attempts to resolve this issue by developing methods on unstructured grids. The
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bulk of these techniques are based on finite element (e.g. Jansen3) or finite volume (e.g. Bui4) framework,
that employ low-order spatial approximations. Large truncation and aliasing errors of these schemes lead to
significant errors in the LES results.6

Spectral element methods offer several attractive features that make them excellent candidates for LES
in complex geometries. They have previously been successfully applied to direct numerical simulation of
turbulent flows.5 As higher-order finite element methods they can deal with arbitrary complex geometry.
Moreover spatial resolution can be conveniently altered either by increasing the number of elements (h-
refinement) or increasing the polynomial order within the elements (p-refinement). In smooth solution
spaces, the methods provide asymptotically exponential rate of spatial convergence with p-refinement. LES
within spectral element framework has started to gain attention only recently. Spectral element filtering
strategies for LES has been studied by Blackburn and Schmidt7 and Levin et. al.8 Karamanos used an
unstructured spectral/hp finite element method9 for large eddy simulation using classical sub-gird models and
more recently multidomain method10 to implement spectral vanishing viscosity concepts. The unstructured
method used by Karamanos employs 2-dimensional spectral elements (triangles) and Fourier expansion in
the third direction. To the best of the authors’ knowledge there has been no previous attempt to develop
spectral element LES code employing fully unstructured mesh.

In this paper, we present a high-order discontinuous Galerkin method on tetrahedral elements which
addresses the restrictions of the lower order methods and structured grids. We combine an element- based
filtering technique with dynamic estimation of the sub-grid constants to model the effect of unresolved scales.

The paper is organized as follows. First we describe the the governing equations for LES of compressible
flows. Then we outline the numerical method used to solve the governing equations. Next we provide descrip-
tion of the sub-grid model together with the element based filtering technique used for its implementation.
Finally, we present results for a 2D plane Poiseuille flow at high Reynolds number.

II. Governing Equations

A. Compressible Navier-Stokes

The governing equations for the compressible and viscous fluid flow are the conservation statements for mass,
momentum and energy. They are presented in non-dimensional, conservative form with Cartesian tensor
notation,

∂ρ

∂t
+

∂(ρuj)
∂xj

= 0, (1)

∂(ρui)
∂t

+
∂(ρuiuj + pδij)

∂xj
=

∂σij

∂xj
, (2)

∂(ρe)
∂t

+
∂[(ρe + p)uj ]

∂xj
= − ∂qj

∂xj
+

∂(σijui)
∂xj

. (3)

The total energy, viscous stress tensor and heat flux vector are given as,

ρe =
p

γ − 1
+

1
2
ρukuk, (4)

σij =
µ

Re

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
, (5)

qj = − µ

(γ − 1)RePrM2
f

∂T

∂xj
. (6)

The Reynolds number Re is based on the reference density ρ∗f , velocity U∗
f , length L∗f , and molecular viscosity

µ∗f and is given by Re = ρ∗fU∗
f L∗f/µ∗f . Pr = µ∗fCp/k∗ is the Prandtl number. The non-dimensional viscosity

is taken as µ = µ(T )/µ∗f , where µ(T ) is the molecular viscosity at temperature T . The superscript ∗ denotes
dimensional quantities. The above equation set is closed by the equation of state,

p =
ρT

γM2
f

, (7)
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where Mf is the reference Mach number, taken to be 1 in this work.
The conservation equations can be cast in the matrix form

∂Q

∂t
+

∂F a
i

∂xi
− ∂F v

i

∂xi
= 0, (8)

where

Q =




ρ

ρu1

ρu2

ρu3

ρe




, (9)

F a
i =




ρui

ρu1ui + pδi1

ρu2ui + pδi2

ρu3ui + pδi3

(ρe + p)ui




, (10)

F v
i =




0
σi1

σi2

σi3

−qi + ukσik




. (11)

Here Q is the vector of the conserved variables and will also be referred to as the state vector in this work.
F a

i and F v
i are the advective and viscous flux vectors respectively, in the xi direction.

B. Filtered Navier-Stokes

The main issue in LES is the separation of small scales or high frequency modes (in space) in order to reduce
the number of degrees of freedom of the dynamical system and therefore make the problem more tractable.
Thus, it is necessary to devise a mathematical model which would enable that. The most popular method
is to apply a spatial low-pass (in frequency domain) convolution filter to the mathematical model which
describes the flow exactly (i.e. Navier-Stokes equations). Alternate mathematical models have also been
proposed (see Sagaut14 for details). Filtering in physical space is represented as a convolution product,

f(x, t) =
∫

Ω

f(x
′
, t)G(x− x

′
)dx

′
, (12)

where G is the filter kernel and Ω represents the flow domain. For compressible flows it is convenient to
apply density weighted filtering operation introduced by Favre.15 In Favre filtering, the filtered quantities
are obtained as,

f̃ =
ρf

ρ
, (13)

where overbar denotes the filtering operation. The above procedure leads to the following filtered conservation
equations (assuming filtering commutes with differentiation),

∂ρ

∂t
+

∂(ρũj)
∂xj

= 0, (14)

∂(ρũi)
∂t

+
∂(ρũiũj + pδij)

∂xj
=

∂σ̃ij

∂xj
− ∂τ sgs

ij

∂xj
+

∂(σij − σ̃ij)
∂xj

, (15)
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∂(ρe)
∂t

+
∂[(ρe + p)ũj ]

∂xj
= − ∂q̃j

∂xj
+

∂(σ̃ij ũi)
∂xj

− ∂qsgs
j

∂xj
· 1
(γ − 1)M2

f

. (16)

In Eq. (15), σ̃ij is the viscous stress tensor based on the filtered quantities, while τsgs
ij is the sub-grid scale

stress tensor. The last term (σij− σ̃ij) arises due to the nonlinearity of the viscous stresses. In Eq. (16), qsgs
j

is the sub-grid term due to nonlinearity of the advective energy flux. The modeling of the sub-grid terms is
discussed in Section IV A.

III. Numerical Method

In this section we provide a brief description of the numerical method employed for the simulation.
Complete description of the method could be found in Refs.11,12

A. Nodal element

The nodal approximation basis requires construction of a multivariate Lagrangian interpolant within a
tetrahedron. We begin by considering a smooth and invertible mapping function Ψ : D → I that maps any
straight face tetrahedral element D to the standard tetrahedron I. Thus any x ∈ D is mapped to ξ ∈ I. Since
we consider only straight face tetrahedron, the transformation jacobian and metric of the transformation is
constant. This allows us to develop the numerical scheme on the standard tetrahedron I and apply it to the
physical element D by linear rescaling. Next we describe the construction of Lagrange interpolation function
within the standard tetrahedron I. The natural polynomial space for the approximation functions defined
on the tetrahedron is ,

P 3
n = span{ξiηjζk; i, j, k ≥ 0; i + j + k ≤ n}, (17)

where n is the order of the polynomial. The dimension of the above approximation space is,

dimP3
n = N3

n =
(n + 1)(n + 2)(n + 3)

6
, (18)

which is also the size of the nth-order generalized Pascal triangle.13 In-order to derive a Lagrangian interpo-
lation basis we introduce the nodal set, Π3

n = (ξ0, ..., ξN ) where ξα are the node points within the tetrahedron
I and N = N3

n−1. The derivation of the Lagrangian basis relies on the introduction of complete polynomial
basis, pα(ξ) ∈ P 3

n , such that any smooth function f(ξ) defined in I would have the interpolation property,

Υ3
nf(ξα) = f(ξα) =

N∑

β=0

aβpβ(ξα), ∀α ∈ [0....N ] (19)

which can also be written in the matrix form,

f = V a, Vαβ = pβ(ξα), (20)

where V is the Vandermonde matrix. We now define a Lagrangian basis as,

Υ3
nf(ξ) = f(ξ) =

N∑
α=0

f(ξα)Lα(ξ), (21)

where the Largrange polynomial has the cardinal property, Lα(ξβ) = δαβ . The polynomials Lα are recovered
by solving the interpolation problem,

pβ(ξ) =
N∑

α=0

pβ(ξα)Lα(ξ), ∀β ∈ [0.....N ], (22)

V T L = p.

The success of the above method depends heavily on the choice of the polynomial basis pβ(ξ) and the
multidimensional nodal set Π3

n. The polynomial basis used in this work is obtained from the classical Jacobi
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polynomial (see Hesthaven13). Nodal set distribution computed by Hesthaven13 is employed in this work.
This combination guarantees a well conditioned Vandermonde matrix and consequently efficient computation
of the Lagrange polynomials.

B. Discretization of the governing equations

Having established a suitable high-order approximation basis within the tetrahedron we now proceed to
briefly describe the basics of the discretization and solution of the governing partial differential equations.
The computational domain (Ω) is represented by union of non-overlapping tetrahedral elements Dk. Thus

Ω =
∑

Dk. (23)

We approximate the state vector in each element as

q(x, t) ≈ qN (x, t) =
N∑

α=0

qα(t)Lα(x), ∀x ∈ Dk, (24)

where qα(t) = q(xα, t) and N + 1 is the total number of node points within the tetrahedron. Similar
approximation is considered for the flux vectors F,

F (x, t) ≈ F N (x, t) =
N∑

α=0

F α(t)Lα(x), ∀x ∈ Dk, (25)

where F α(t) = F (xα, t). With the polynomial approximation in place, we now put the equation in the
strong form of the discontinuous Galerkin formulation,

∫

Dk

(
∂qN

∂t
+∇ · F N

)
Lα(x)dx =

∮

∂Dk

Lα(x)n · (F N − F ∗)dx. (26)

The numerical flux F ∗ is used to enforce elemental coupling or in other words to pass information between
elements. Substitution of the polynomial approximations in the above equation leads to local operators,

M̂αβ =
∫

Dk

LβLαdx, Ŝαβ =
∫

Dk

∇LβLαdx, F̂αβ =
∮

∂Dk

∇LβLαdx. (27)

The use of the above operators transforms the equation into

M̂
dq

dt
+ Ŝ · F = F̂n · [F (q−)− F ∗(q+, q−)]. (28)

In the above form q denotes the 4N vector coefficients for qN , and similarly for F and F ∗. The superscript
‘-’ refers to the values local to the element whereas ‘+’ refers to the values from the neighboring elements. We
finally complete our formulation with a prescription for the numerical flux F ∗. In this work a Lax-Friedrichs
flux is chosen to represent the numerical flux,

n · [F − F ∗] = n · [F− − F + + |λ|(q+ − q−)]. (29)

where |λ| is the largest eigenvalue of the linearised system of equations. It is taken to be the global maximum
of |(u2 + v2 + w2)1/2 + cair|.

IV. Closure of LES Equations

In this section we describe the methodology for closing the governing equations for LES.
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A. Sub-grid scale model

The filtered Navier-Stokes equations are unclosed because of the presence of the sub-grid terms, which need
to be modeled. These terms physically represent the effect of the unresolved (sub-grid) scales on the resolved
scales. Let us consider the modeling of the unclosed terms in the momentum equation first.

The term (σij− σ̃ij) is neglected following Refs.16,17 The sub-grid term τsgs
ij = ρ(ũiuj− ũiũj) is modeled

using the modification of the Germano model18 for compressible flows (given by Moin et al.19). The expression
for τ sgs

ij is accordingly given as

τsgs
ij = −2Cs42

ρ|S̃|
(

S̃ij − 1
3
S̃mmδij

)
+

1
3
τsgs
kk δij . (30)

The trace of the sub-grid stress tensor τsgs
kk cannot be included in the modified pressure in compressible flow,

and thus has to be modeled separately. Different models of τsgs
kk have been proposed (see Refs.20,21). However

studies by Squires22 demonstrated that there is no difference in the LES results of compressible isotropic
turbulence at low Mach number when τsgs

kk is neglected. Vreman et al.23 confirmed the above findings with
their simulation of 3D compressible mixing layers at a mean convective Mach number of 0.2. In apriori
test, the SGS model that neglects τ sgs

kk was found to be in better agreement with DNS results. Moreover,
simulations conducted with a dynamic model for τsgs

kk were often unstable for the cases studied. Thus we
conclude that for low Mach number LES, neglecting the trace of sub-grid stress tensor will not introduce
large errors and in some cases might be beneficial. As a result we neglect the term in this work. The details
of the dynamic procedure to obtain the estimate for Cs42

are provided in Section B. The sub-grid term in
the energy equation (qsgs

j ) due to nonlinearity of the advective fluxes is given as (for complete derivation see
Ref.2),

qsgs
j = ρ

(
T̃ uj − T̃ ũj

)
. (31)

This term is modeled using the eddy-viscosity hypothesis and a turbulent Prandtl number.19 Accordingly
the modeled expression is,

qsgs
j =

ρCs42|S̃|
Prt

∂T̃

∂xj
. (32)

The turbulent Prandtl number Prt is evaluated using the dynamic procedure (see Section B). The sub-grid
term due the nonlinearity of the viscous work term (uiσij) is neglected following the work of Vreman et.
al.16

B. Dynamic procedure

The dynamic model18 is based on the supposition that in the inertial range of the turbulence energy spectrum,
the physics is statistically self similar at different length scales. Therefore, same functional form for the sub-
grid quantities can be assumed at the grid length scale 4, representative of the computational mesh, and
at a larger test filter length scale 4̂. The application of the test filter to the grid filtered Navier-Stokes (Eq.
(15)) leads to a residual stress at the test filter level,

Tij = ̂ρuiuj − ρ̂uiρ̂uj

ρ̂
. (33)

Similarly applying the test filter to the residual stresses at the grid filter level (τ sgs
ij ) gives,

τ̂sgs
ij = ̂ρuiuj −

̂ρuiρuj

ρ
. (34)

The difference between Eq. (33) and Eq. (34) leads to the Germano’s identity,

Lij = Tij − τ̂ sgs
ij = ̂ρũiũj − ρ̂ũiρ̂ũj

ρ̂
. (35)

Assuming that same functional form (Smagorinsky model) could be used for the residual stresses at both
levels, we have the modeled forms as,
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Tij = −2Cs4̂2ρ̂|̂̃S|
(

̂̃
Sij − 1

3
̂̃
Smmδij

)
+

1
3
Tkkδij , (36)

τsgs
ij = −2Cs42

ρ|S̃|
(

S̃ij − 1
3
S̃mmδij

)
+

1
3
τsgs
kk δij . (37)

Now we define Mij , as

Mij = 2
̂

ρ|S̃|
(

S̃ij − 1
3
S̃mmδij

)
− 2

4̂2

42 ρ̂|̂̃S|
(

̂̃
Sij − 1

3
̂̃
Smmδij

)
, (38)

where typically 4̂2

42 = 2 is assumed. Therefore, the modeled form of Lij is given by

Lij = Cs42
Mij − 1

3
τsgs
kk δij +

1
3
Tkkδij . (39)

Here we neglect both τsgs
kk and Tkk. Finally, using Lily’s24 least square minimization procedure we obtain,

Cs42
=

LijMij

MklMkl
. (40)

This procedure gives a local time dependent estimate of Cs42
, which is updated at every time step in the

computation. It is worthwhile to note that the above procedure computes the Smagorinsky length scale
Cs42

directly without the need to specify the grid filter width 4. This is advantageous in the current
context considering that for unstructured grids it is generally difficult to provide an expression for the filter
width 4.

C. Element level filtering

The dynamic procedure involves explicit application of the filter (test filter) on the grid filtered quantities.
In this work we employ a smooth element based filtering approach following Blackburn and Schmidt.7 Since
our polynomial basis functions pβ form a hierarchial set, implying that they have progressively higher spatial
frequencies, we can apply a low pass filter in the spectral space to remove the high frequency modes (small
scales). The solution of the discretized equations leads to nodal values of the state vector (see Section III B).
Therefore, in-order to apply the filtering in spectral space we need to transform the solution from the nodal
representation (q) to modal (q∗) representation. This is implemented by discrete polynomial transform. If pβ

are the polynomial basis functions then the nodal values of any smooth function q(x) could be represented
by the spectral expansion,

q(xα) =
∑

q∗βpβ(xα), (41)

as in Eq. (19). In matrix vector form this is represented as

q = V q∗, (42)

where V is the Vandermonde matrix defined in Eq. (20). The spectral coefficients (q∗) are recovered by
taking the inverse of V ,

q∗ = V −1q. (43)

Now the spectral filter could be applied in the space of the coefficients q∗. Let us define a filter vector lk
and filter diagonal L = diag(l0......lN). The filtered modal values q∗ are produced by the matrix operation,

q∗ = LV −1q, (44)

from which the filtered nodal values could be recovered as,

q = V LV −1q = Fq. (45)

The filter weights lk can be chosen in an appropriate manner. For example, lk could be a spectral top-hat
filter, or a set that is smooth in spectral space, such as exponential filter25 or Boyd-Vandeven coefficients.8
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Figure 1. Evolution of wall shear stress for 2D Poiseuille flow (DNS).

V. Results and Discussion

Real turbulence is always three-dimensional. Transition to turbulence for plane parallel (uni-directional)
shear flows is a very complicated phenomenon, encompassing both linear and nonlinear instability mecha-
nisms. At sufficiently high Reynolds number, plane Poiseuille flow becomes unstable due to the growth of
the 2D waves, known as Tollmien-Schlichting (TS) waves. In the absence of any short-wave 3D disturbances,
the TS waves equilibrate at some finite amplitude. The presence of 3D perturbations will lead to complete
breakdown of these waves and the flow degenerates into fully developed turbulence.26 In a real transition
situation, there may not be any distinct 2D and 3D phases present. In other words 3D disturbances do not
necessarily wait till 2D equilibrium is established before entering into the flow dynamics. Nevertheless, at-
tempts have been made to isolate the role of 2D structures in transition to turbulence through 2D numerical
simulations (e.g. Ref.27). Since the main objective of the present work is to validate the code for turbulent
channel flow, we start by simulating 2D Poiseuille flow at high Reynolds number to verify the ability of our
method to capture the 2D TS waves. The next phase would be to perform 3D simulations and validate the
code against existing data in the fully turbulent regime of the flow. It must again be pointed out that no
attempt is being made here to study the nature of complete transition to turbulence (which would heavily
depend on the presence of 3D modes), but only to investigate the ability of the numerical method to capture
the initial transition phenomena which are predominantly 2D.

We perform both DNS and LES for the flow. For the DNS case we use a mesh with 8,958 elements
(non-uniform in the wall normal direction) and polynomial order n = 5. Since the flow is periodic in the
streamwise direction, a time dependent body force is added to the momentum equation to drive the flow.
It has been shown by Lenormand et. al.,28 that specifying a constant source term leads to a mass flux
that is time dependent. This makes analysis at constant Reynolds number impossible. Therefore, in order
to maintain a constant mass flux, the source term needs to be time dependent. We employ the algorithm
presented in Ref.,28 to calculate the time dependent forcing term. From the linear stability theory, the
critical Reynolds number for the 2D Poiseuille flow is Recr = 5, 772.29 The geometry of the channel is
chosen such as Lx = 7 and Ly = 1. The flow is simulated at Reynolds number of Re = 10, 000 based on
channel half width and average velocity. The Mach number is chosen to be Ma = 0.1 so that the effects of
compressibility are small.

Figure 1 shows the time evolution of skin friction coefficient for the DNS case. We observe that the initial
random perturbations are damped out around t = 5 and only the unstable TS modes start to grow thereafter.
At about t = 35 they eventually equilibrate due to the absence of any three-dimensional disturbances. The
instantaneous plot of streamwise momentum flux (Figure 2) at three different times, shows the presence of
the TS waves. The peaks correspond to high velocity fluctuations while the valleys represent low fluctuations.

Next, we investigate the effect of the sub-grid model with two different filters: sharp spectral (top hat)
filter and smooth (exponential filter) on the same flow. A common concern with spectral element filtering
is that the filtering does not preserve the inter-element continuity and boundary conditions (C0 continuity).
However, that is not an issue for an inherently discontinuous method used here. Moreover, filtering is
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Figure 2. Streamwise momentum flux for 2D Poiseuille flow from DNS: (a) t=40 (b) t=60 (c) t=80.

applied to the intermediate fields only to construct the eddy viscosity estimate. Figure 3 shows streamwise
momentum contours for LES cases for two different filter types. A total of 4,144 elements and n = 5 were
used for the cases. Comparison with DNS case indicates that the top hat filter result agrees better. Finally,
we compare statistics from the DNS and LES (with top hat filter) runs. Figure 4 shows the Favre averaged
axial velocity profiles, where we observe excellent match. The average normal velocity was found to be
non-zero due to the algorithm employed to calculate the time dependent source term in the axial momentum
equation, which is not fully mass conserving. Increasing the order of the polynomial reduces the discrepancy
in the normal velocity. Figure 5 shows the velocity fluctuations (again Favre averaged) for the two cases,
normalized by the friction velocity. The LES case over-predicts both Urms (maximum difference near the
wall) and Vrms (maximum difference at the center of the channel).

VI. Conclusions

A high-order discontinuous Galerkin method on unstructured grids has been proposed for large-eddy
simulation in complex geometries. The basics of the numerical scheme and sub-grid modeling approach
have been discussed. Transition phenomenon in two-dimensional Poiseuille flow at high Reynolds number
is investigated. The numerical method is able to capture the unsteady features which are characteristic of
high Reynolds number. Work is currently underway to develop the 3D code and validate it against DNS
and experimental database for fully turbulent plane channel flow.
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temperature, C. R. Acad. Sci. Paris., 273, 1087, 1971.
16Vreman, B., Guerts, H., and Kuerten, H., Subgrid-modeling in LES of compressible flow , Appl. Sci. Res., 54, 191, 1985.
17Vreman, B., Guerts, H., and Kuerten, H., A priori tests of large eddy simulation of compressible mixing layer, J. Eng.

Math., 29, 299-327, 1995.
18Germano, M., Piomelli, U., Moin, P., and Cabot, W.H., A dynamic subgrid scale eddy viscosity model, Phys. Fluids A

3, 7, 1760-1765, 1991.
19Moin, P., Squires, K., Cabot, W., and Lee, S., A dynamic subgrid model for compressible turbulence and scalar transport,

Phys. Fluids A 3, 11, 2746-2757, 1991.
20Yoshizawa, A., Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling, Physics

of Fluids A, 29, 2152-2164, 1986.
21Erlebacher, G., Hussaini, M.Y., Speziale, C.G., and Zang, T.A., Toward the large eddy simulation of compressible

turbulent flows, Journal of Fluid Mechanics, 238, 155-185, 1992.
22Squires, K.D., Dynamic subgrid scale modeling of compressible turbulence, Annual Research Brief, Stanford University,

1991.
23Vreman, A.W., Guerts, B.J., and Kuerten, JGM, Subgrid modeling of LES of compressible flow, Direct and large eddy

simulation I, Kluwer acdemic publisher, Netherlands, 1994.
24Lily, D.K., A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A 4, 3, 633-635, 1992.
25Gotlieb, D., and Hesthaven, J.S., Spectral methods for hyperbolic problems, J. Comput. and Appl. Math, 128, 83-131,

2000.
26Orszag, S.A., and Bayly, B.J., Instability mechanisms in shear-flow transition, Ann. Rev. Fluid Mech., 20, 359-391, 1988.
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