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In this paper, the two-dimensional particle-laden flow developments are studied with
bronze particle cloud in the accelerated flow behind a running shock. The forty thousands
particle clouds are arranged initially in a rectangular, triangular and circular shape. The
flows are computed with a recently developed high-order Eulerian-Lagrangian method,
that approximates the Euler equations governing the gas dynamics with the improved high
order weighted essentially non-oscillatory (WENO-Z) scheme, while individual particles are
traced in the Lagrangian frame using high-order time integration schemes. A high-order
ENO interpolation determines the carrier phase properties at the particle location. A
high-order central weighing deposits the particle influence on the carrier phase. Reflected
shocks form ahead of all the cloud shapes. The detached shock in front of the triangular
cloud is weakest. At later times the wake behind the cloud becomes unstable and a two-
dimensional vortex-dominated wake forms. Separated shear layers at the edges of the
clouds pulls particles initially out of the clouds that are consequently transported along
the shear layers. Since flows separated trivially at sharp corners, particles are mostly
transported out of the cloud into the flow at the sharp front corner of the rectangular
cloud, and the trailing corner of the triangular cloud. Particles are transported smoothly
out of the circular cloud, since it lacks sharp corners. At late times, the accelerated flow
behind the running shock disperses the particles in cross-stream direction the most for the
circular cloud, followed by the rectangular cloud and the triangular cloud.

I. Introduction

Shock waves are encountered in many technological environments, like supersonic aircraft, hypersonic
space vehicles, jet engines, and explosions. Often the flow containing shocks interact with solid or liquid
particles. For example, liquid or solid fuel particles interact with a chemically reacting fluid containing
shock waves in high speed combustors. Debris interacts with shocks and fluid turbulence in dust explosions.
In lithotripsy, kidney stones are broken into smaller kidney stone particles by means of shocks. When the
flow containing shocks is turbulent, the scale range of the gas dynamics is enormous. The mutual exchange
of mass, momentum and energy of particles and the carrier gas results in even more complex, multi-scale
physics. The complexity and size of the particle-laden shock flow problems has left many open problems.

The direct analysis of the particle-laden shocked flow requires the computation of the complete flow
over each particle, the tracking of individual solid or liquid complex particle boundaries along their paths,
and the tracking of shock waves in the moving framework. The individual computational components are
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difficult to resolve and currently barely within reach even with the advances of computational technologies.
The combined problem of shock and particles has an immense complexity, scale range and size, that can
currently potentially be analyzed in highly idealized situation with a few particles.

Simplified models are required to handle more realistic situations. Eulerian-Lagrangian (EL) methods
have provided outcome for particle-laden flows. In particular, EL methods that model particles as points
like the Particle-Source-in-Cell (PSIC) method.1 In PSIC the carrier gas is solved in the Eulerian frame on
a mesh, while individual particles are modeled as points and are traced along their path in a Lagrangian
formulation. The carrier gas and the particles are coupled through interpolation. The point modeling of
particles enables the computation of a large, realistic number of particles and simulation of particle-laden
flow in engineering applications.

The main difficulty in shock capturing and tracing is to accurately capture the sharp discontinuous shock
jump in the flows fields in a stable manner. Often times, robustness considerations lead to a preference for
low order methods that have excessive numerical diffusion near the shock. Even though, this is often good
enough to capture the short time dynamics of the shock, the numerical diffusion dissipates important smaller
scale flow structures in the wake of the shock. Moreover, long time capturing of the shock is inaccurate. The
particle-mesh method also typically relies on relatively simple, coarse grids and/or numerical schemes with
low order of accuracy, i.e. first order or second order methods. Lower order based methods limit the accurate
computation of particle-laden flows with a large range of active temporally and spatial scales. Dispersion
and diffusion errors plague the accuracy of the solution.

For problems in which a large number of ranges coexist, high order and high resolution numerical algo-
rithms have great potential to accurately and efficiently capture all flow features for long time. In Ref. 2, we
initiated the development of a high-order algorithm PSIC algorithm for the computation of particle-laden flow
of shocks. We solved the gas dynamics with an improved high order Weighted Essentially Non-Oscillatory
schemes (WENO-Z).3 This type of method has proven very effective for the simulation of the fine scale and
delicate structures of the physical phenomena involving shocks. A consistent and stable high-order ENO
interpolation was introduced for interpolation of the gas flow to the particle. A smooth higher ordering
weighing ensured a low noise and accurate coupling of the particles to the gas. Time integration of the
carrier phase and the particles is performed with a high order Runge-Kutta TVD method without splitting.

In this paper, we compare the computed particle-laden flow developments of several cloud shapes of
bronze particles initially seeded in the accelerated flow behind a running shock using our high-order PSIC
method. We compare three initial cloud shapes including a rectangular, a circular and a triangular shape.
Boiko et al.4 and Kiselev et al.5 have reported on the flow development with rectangular cloud shape.
Their computations revealed particle transport mechanisms and flow developments. They also partially
validated their computations with experiments in a shock tube. In Ref. 2 we revisited this flow using the
high-order PSIC method. It was shown that the high-order method is more able than low-order methods
to simultaneously capture the shock and small scale flow developments in the wake of the cloud. Analysis
of the rectangular cloud revealed that at long times particles accumulate in the particle streaks that form
from the corners of the rectangular shape. Here, we compare the particle-laden flow of the initial rectangular
cloud with developments of an initially circular and triangular particle cloud. We show that the change of
initial shape dramatically changes the dispersion of the particles at early and late times. Detonation type
shock waves will have the largest impact on the circular cloud shape, while the triangular cloud shape is
least affected by the accelerated flow behind a running shock.

We will briefly review the developed high order PSIC method followed by a discussion of a moving
shock interacting with a cloud of particles that have three different initial shapes including a rectangle, a
triangle and a circle. In section II, the PSIC formulation is presented. We give a brief description of the
improved fifth order weighted essentially non-oscillatory scheme WENO-Z. We summarize the high order
particle algorithm, including interpolation, weighing and time integration. In Section III, we discuss the two
dimensional shock-particles cloud interactions computed with the high-order PSIC method. Conclusion and
direction of future research are given in Section IV.

II. The Physical Model and Particle-Source-In-Cell method

In the particle-source-in-cell (PSIC) method the Eulerian continuum equations are solved for the carrier
flow in the Eulerian frame, while particles are traced along in the Lagrangian frame.

In the following, we shall denote the subscript p for the particle variables and f for the gas variables at
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the particle position. Variables without subscript refer to the gas variables unless specified otherwise.

A. Euler equation in the Eulerian frame

The governing equations for the carrier flow are the two-dimensional Euler equations in Cartesian coordinates
given by:

Qt + Fx + Gy = S, (1)

where

Q = (ρ, ρu, ρv,E)T
,

F =
(
ρu, ρu2 + P, ρuv, (E + P )u

)T
, (2)

G =
(
ρv, ρuv, ρv2 + P, (E + P )v

)T
,

and the equation of state is

P = (γ − 1)
(

E − 1
2
ρ
(
u2 + v2

))
, γ = 1.4 (3)

T =
γPM2

ρ
, (4)

where M = U/
√

γRT is a reference Mach number determined with the reference velocity, U and reference
temperature, T . The source term, S, accounts for the effect of the particles on the carrier gas and will be
discussed in more detail below.

B. Particle equation in the Lagrangian frame

Particles are tracked individually in the Lagrangian frame. The kinematic equation describing the particle’s
position ~xp, is given as

d~xp

dt
= ~vp, (5)

where ~vp is the particle velocity vector.
The particles’ acceleration is governed by Newton’s second law forced by the drag on the particle. With

particles assumed spherical, we take the drag as a combination of the Stokes drag corrected for high Reynolds
and Mach number and the pressure drag leading to the following equations governing the particle velocity,4

d~vp

dt
= f1

(
~vf − ~vp

τp

)
− 1

ρp
∇P |f , (6)

where ~vf is the velocity of the gas at the particle position, ρp the particle density. The first term on the right
hand side describes the particle acceleration resulting from the velocity difference between the particle and
the gas. f1 is an empirical correction factor4 that yields an accurate determination within 10% of measured
particle acceleration for higher relative particle Reynolds number up to Ref = 10, 000 and relative particle
Mach number up to Mf = |~vf |/

√
Tf = 1.2 and is given by

f1 =
3
4

(
24 + 0.38Ref + 4

√
Ref

)(
1 + exp

[
−0.43
M4.67

f

])
. (7)

The second term is the particle acceleration induced by the pressure gradient in the carrier flow at the particle
position. The particle time constant τp = Red2

pρp/18.0, where dp is the particle diameter, is a measure for
the reaction time of the particle to the changes in the carrier gas. Re = UL/ν is the Reynolds number of
the carrier gas flow with L a reference length and ν the dynamic viscosity. Here, we assume Re large and
we therefore do not model viscous effects in the governing Eulerian equations for the gas flow (1).

The particle temperature is mostly affected by convection. From the first law of thermodynamics and
Fourier’s law for heat transfer, the equation for temperature is derived as,

dTp

dt
=

1
3

Nu

Pr

(
Tf − Tp

τp

)
, (8)

where Pr = 1.4 is the Prandtl number, taken as its typical value for air in this paper. Nu = 2+
√

RefPr0.33

is the Nusselt number corrected for high Reynolds number.
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C. Source term S for the Euler equation

Each particle generates a momentum and energy that affects the carrier flow. The volume averaged summa-
tion of all these contributions gives a continuum source contribution on the momentum and energy equation
in (1) as:

~Sm(~x) =
Np∑
i=1

K(~xp, ~x) ~Wm, (9)

Se(~x) =
Np∑
i=1

K(~xp, ~x)( ~Wm · ~vp + We), (10)

where K(x, y) = K(|x − y|)/V is a normalized weighing function that distributes the influence of each
particle onto the carrier flow. ~Wm = mpf1(~vf − ~vp)/τp and We = mp(Nu/3Pr) (T − Tp) /τp are weigh
functions describing the momentum and energy contribution of one particle, respectively. mp is the mass of
one spherical particle which can be derived from τp. Np is the total number of particles in an finite volume
V . The normalized weighing function will be further discussed below.

D. Flow solver

The carrier flow equations (1) are discretized spatially with a fifth-order weighted essentially non-oscillatory
conservative finite difference scheme (WENO-Z)6 in a uniform mesh and temporally with the third order
Runge-Kutta TVD scheme.

The nonlinear nature of the hyperbolic Euler equations admits finite time singularities in the solution
even when the initial condition is smooth. It is important that the numerical methods employed avoid
non-physical oscillations, also known as the Gibbs phenomenon, when the solution becomes discontinuous.
Among many high order shock capturing schemes, the weighted essentially non-oscillatory finite difference
schemes (WENO) for conservation laws7 has been very successfully employed for the simulation of the fine
scale and delicate structures of the physical phenomena related to shock-turbulence interactions.

The essence of the WENO scheme is the nonlinear adaptive stencils, where a nonlinear convex combination
of lower order polynomials adapts either to a higher order approximation at smooth parts of the solution, or
to an upwind lower order spatial discretization that avoids interpolation across discontinuities and provides
the necessary dissipation for shock capturing. The nonlinear coefficients of the convex combination, hereafter
referred to as classical weights, are based on the local smoothness indicators, which measure the sum of the
normalized squares of the scaled L2 norms of all derivatives of the lower order polynomials. An essentially
zero weight is assigned to those lower order polynomials whose underlining stencils contains high gradients
and/or shocks, yielding an essentially non-oscillatory solution at discontinuities. At smooth regions, higher
order is achieved through the mimicking of the central upwinding scheme of maximum order, when all the
smoothness indicators are about the same size. The classical weights were later further improved by Costa et
al. that made use of existing higher order information contained within the stencils. The improved weights6

(WENO-Z) were shown to satisfy the necessary and sufficient conditions for the optimal order of the given
fifth order scheme.

At each grid point, the first order Lax-Friedrichs flux splitting is used as the low order building block
to split the Euler flux, ignoring the source term, into the positive and negative going fluxes. The positive
and negative going fluxes are then decomposed into the characteristic variables via the left eigenvectors and
eigenvalues of the Euler flux. The eigensystem of the Euler flux is obtained via the linearized Riemann solver
of Roe.8 The characteristic variables are then reconstructed via the improved high order weighted essentially
non-oscillatory (WENO-Z) scheme as discussed above. The reconstructed characteristic variables are then
re-projected back into the physical space as the numerical flux via the right eigenvectors (see Shu et al.7 for
further details.)

E. Particle solver

Lagrangian tracking of the particles consists of three stages per particle, including searching the element
a particle is located in, interpolating the field variables to the particle location, and pushing the particle
forward with a time integration method.
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Locating the host cell of a particle is a trivial task on a structured grid. Following Jacobs and Hesthaven,10

to avoid aliasing errors and an unphysical numerical total energy increase, the order of interpolation has to
equal the approximation order k of the stencil Sk and the time integration of the particle solver and the
carrier phase solver have to match. To determine the field variables at the particle location we use the ENO
interpolation introduced by Jacobs and Don2 suited to flows containing shock discontinuities. The ENO
interpolation was shown to prevent Gibbs oscillations plague the accuracy of the centered interpolation over
shocks.

In smooth flow areas without shocks, the WENO-Z method uses a central difference scheme. A centered
interpolation to the particle position is then most accurate and preferred. We use Lagrange interpolating
polynomial of degree k,

Pk(xp) =
ip+k/2∑

i=ip−k/2

Q(xi)li(xp), (11)

where ip represents the nearest cell center to the left of the particle position. The number of points k should
be equal to the number of points used as the order of the WENO scheme.10 In the case of the fifth order
WENO scheme, k = 5.

In shocked regions the centered interpolation will produce undesirable Gibbs oscillations. With an ENO
interpolation,13 these oscillations are essentially removed. ENO interpolation is only necessary in WENO-
domains identified by the smoothness indicator. In those domains, the interpolating points are determined
based on smoothness of the function indicated by the divided differences. The k-th degreed divided differences
are determined first.

The 0-th order divided differences of Q are defined by:

Q[xi] ≡ Q(xi). (12)

The j-th degree divided difference for j ≥1 are defined by

Q[xi, · · · , xi+j ] ≡
Q[xi+1, · · · , xi+j ]−Q[xi, · · · , xi+j−1]

xi+j − xi
. (13)

Starting from a two point stencil , xip
, xip+1, the interpolation stencil is expanded to k points based on a

comparison of the divided differences of the the increasing order at ip. The smallest second order divided
differences at ip of the two potential three point stencils min

{
Q[xip−1, xip , xip+1], Q[xip , xip+1, xip+2

}
indi-

cates the smoothest interpolation stencil and is therefore chosen. This procedure is repeated until a k point
interpolant is found. The Lagrange interpolant in (11) then interpolates to the particle position.

In two dimensions, the same procedure can be used along the separate dimension on the tensor grid. The
divided differences are determined along horizontal and vertical lines in the grid. With the 1D approach
outline above, we find the left most and bottom most grid point of the interpolation stencil with k×k points
for each grid point in the domain.

We give an example of a two dimensional ENO stencil in Fig. 1. The particle’s nearest grid point is
found to the bottom, left of the particle. The left and bottom point of the ENO stencil are determined by
comparison of the divided difference along the horizontal and vertical line crossing the nearest grid point. If
a particle is located in a cell with a shock, then the ENO is one-sided to the left and bottom of the particle.
We note that if two shocks cross the k interpolation stencil, then this procedure will fail to recognize the
second shock. This is, however, mostly a rare short-lived event. We did not encounter stability problems in
the simulations we performed below.

To determine the particle influence on the carrier flow (10), we use the high-order spline interpolation
discussed in Ref. 12. The high-order weighing reduces aliasing and noise in the sources (10) that couple the
particles to the gas flow. The spline Sk is constructed by the convolution of the square nearest-grid-point or
zero order weighting function. For large k the spline approaches the Gaussian function. The 0 th mode of
function in wave space is free of aliasing errors, and the higher component of the function in wave space are
smaller than equivalent Lagrangian interpolations.
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Figure 1. Two dimensional ENO stencil for interpolation to a particle located near to a shock. The left and
bottom point of the interpolation stencil is determined based on the divided differences along the horizontal
grid lines and the vertical grid lines at the particle’s nearest grid point to the left and bottom of the particle.

III. Rectangular, Circular and Triangular Particle Cloud in the Accelerated
Flow Behind a Running Shock

In Ref. 2 we revisited the interaction of a running shock with a cloud of bronze particles in 1D and 2D
studied by Boiko et al.4 and Kiselev et al.5 We demonstrated that the high order PSIC method improved
the capturing of the small scale flow structures behind the running shock, while the global features compared
well to the computations and experiments by Boiko and Kiselev. We also discussed the long time particle
dispersion of an initial rectangular cloud shape in the accelerated flow behind a shock.

Here, we present additional results of the bronze particle dynamics of an initially triangular and circular
cloud shape in the accelerated flow behind a shock. All cloud shapes cover a same area and are initiated with
the same number of particles with the same mass leading to comparable initial particle number densities.

For all cases, we initialize a right running shock with Ms = 3 at xs = 0.175 in a rectangular domain
[0, 3]× [−0.611, 0.611]. The state of the pre-shock flow is

[ρR, uR, pR] = [1, 0, 1]. (14)

The post-shock state can be computed via the well-known Rankine-Hugoniot relations for a given Mach
number Ms. Free stream inflow and outflow boundary conditions are imposed in the inflow and outflow
boundaries, respectively, in the x direction. A periodical boundary condition is imposed in the y direction.
The cloud is seeded directly before the shock at time, t = 0 (e.g. see Fig. 2 for a circular cloud)

Figure 2. Initialization of a circular cloud of particles directly before the right running shock visualized by
the density contours at time t = 0.
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A. Initialization of particle clouds

The rectangular cloud is seeded with uniformly distributed particles at [0.175, 0.352]×[0.044, 0.044] with zero
initial velocity. The circle is initialed with a radius of 0.0704 yielding the same surface area as the rectangle.
The circle center is at [0.2454,0]. For the initial triangle to cover the same surface area as the rectangle
and the circle, the height of the triangle has to be 0.176. The volume concentration of the particles in all
cloud shapes is four percent. The particle response time and density are, τp = 51.69 and ρp = 7.42 × 104,
respectively, corresponding to an experiment with bronze particles in Ref. 5. We take the Reynolds number
needed to compute the particle traces according to the experiment at Ref = 3.387× 107.

B. Particle-Laden Flow Development at Early Time

We discuss the particle-laden flow development through snapshots of the vorticity and the particles at four
non-dimensional times of t = 0.1, 0.225, 0.5, 0.75 in Figs. 3, 4, and 5. The vorticity magnitude |ω| is plotted
in the left column, and the trajectory of the particles in the right column. A dotted rectangle, circle and
triangle in the figures shows the original shape and position of the particles at t = 0 for reference.

The overall flow field maintains its symmetry at early times up to t = 0.225. At later times the wake
behind the cloud is unstable.

When the right running shocks hits the particle cloud, a reflected shock forms at the front end of the
cloud for each cloud shape. This shock development as visualized by the vorticity magnitude generated by
the shock is comparable for the rectangular and circular shape. In both cases, a strong detached “bow”
curved shock forms with a large part of the shock normal to the flow, as typical for blunt objects. The bow
shock moves upstream at comparable velocity from t = 0.1 to t = 0.225 for the rectangle and circle. At the
sharp front corner of the triangle the reflected shock, however, stays attached until t = 0.1 and does not
move significantly upstream throughout the flow development.

The right running shock moves along the top and bottom sides of the clouds and has passed the cloud
at time t = 0.1. The refracted shock is curved towards the symmetry line at y = 0. Since the triangle is
wider at the back end and hence the distance to the symmetry line larger, the curvature of the right shock
is larger for the triangle as compared to the other two cases.

At early times the particle clouds act like solid bodies in gas flow. The interaction of the accelerated flow
with the particle cloud leads to an increased vorticity near the cloud. At sharp edges the flow separates from
the cloud. The flow separates at the front corners of the rectangular shape. The shear layer reattaches to
the cloud further downstream and separates again at the trailing edge. In the triangle cases, a shear layer
separates only at the sharp trailing edge. The circle has no sharp edge, and the separation location moves
forward from time t = 0.1 to t = 0.225.

The separated shear layer is strongly correlated to the transport of particles out of the cloud into the flow
at early times. The strong vorticity in the separated shear zones pulls the particles out of the shape, hence,
forming the distinct arms and legs previously observed for the rectangle,2 and the two particle streaks at
the rear of the triangle shape. Since the shear layer moves for the circle shape case, the particle streaks out
of the shape are less sharp as for the other two cases.

The accelerated flow stagnates at the front of the blunt rectangular and circular cloud shapes and com-
presses these clouds. The particles at the front end move towards the right at this early time and increase
the particle density. The sharp edge of triangle yields a much lesser compression and the front location of
the triangle has not moved towards the right as far as for the other two cases at t = 0.225. The sides of the
triangle, however, are pushed more inward toward the symmetry line. The rectangle shape is also slightly
compressed inward by the reattached flow on the top and bottom sides toward the symmetry line at y = 0.

In the wake of the shapes, initially two typical recirculation zones form that stretch in flow direction
from t = 0.1 to t = 0.225. The reduced pressure and negative flow velocity push the rear edge of the particle
cloud perhaps counter intuitively upstream.

C. Particle-Laden Flow Development at Late Time

The wake behind all shapes becomes unstable and loses its symmetry at later time (See Figures for t = 0.5
and t = 0.75). An asymmetric shedding is observed in the vorticity contour. Increasingly more particles
have dispersed out of the cloud and the initial shape is hardly recognizable at later times.

The particles have mostly compressed or have formed long and thicker particle streaks into the main flow
originating from the initial shape.
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For the rectangle case, most particles are transported in the arm that forms at the front corner of the
rectangle. The flow separation at the front corners and hence the particle streak emanating from the front
corners persist throughout the computed interval. The particle arm shields the wake flow from the rear of
the rectangular shape. This results in low flow velocities at the rear stagnating the transport of particles
into the legs at the rear at later times.

A separated shear layer also persists for the circle case at later times, yielding a continuous transport of
particles in the particle streak. Initially particles are drawn from the front half of the circle. Later on the
front half of the circle is compressed in streamwise direction, and flow that accelerates to the right encounters
the wider rear half of the circle that was initially pushed upstream by the recirculation behind the circle.
The rear half of the circle induces a new shear layer at time t = 0.5 that widens the influence of the particle
cloud on the flow as seen through the larger cross-stream dispersion and wider wake at t = 0.75 as compared
to t = 0.5. The particle-laden wake of the circle is approximately fifty percent wider than the rectangle
particle-laden wake.

The wake from the triangle cloud shape is significantly narrower than the rectangle and circle. At later
times the front edge of the triangle has been compressed into a blunt nose. Two new particle streaks form
off the front corners of this blunt following the separated shear layers in a comparable fashion to the case
of the rectangle cloud shape. These new streaks reach further into the flow shielding the streaks at the rear
end, that are further compressed toward the symmetry line.

IV. Conclusions and Future Developments

We have compared the computationally determined particle-laden flow developments of an initially rect-
angular, triangular and circular cloud of bronze particles in the accelerated flow behind a running (detona-
tion) shock. We have used our recently developed Eulerian-Lagrangian method characterized by high-order
resolution that is particularly capable of capturing shocks and the small scale particle-laden flow features in
the accelerated flow behind the shock.

At early times particles are transported out of the initial shape following the separated shear flows from
the shape. The flow separates trivially at the sharp corners of the rectangular and triangular cloud shape,
leading to sharp particle streaks emanating from the clouds at these locations. The separation location is
non-trivial and unsteady in case of the circular cloud shape and moves upstream at early times. Particles are
transported into the flow from different locations of the shape at different times and hence form a particle
streak that is less sharp.

The particle-laden wake is widest and particles are dispersed most in cross-stream, for the initially circular
cloud shape, while the particle-laden wake is narrowest for the triangular shape despite it being the widest
shape initially. The primary reason for the narrow wake is that particles are only moving out of the shape
towards the symmetry line following the separated shear layer at the rear of the triangle that curves inward
toward the symmetry line. No separation occurs at the front of the triangle, since the reflected shock at the
front of the trianguler cloud is attached and weaker as compared to the shock reflected in the blunt circular
and rectangular cloud. The flow also remains attached along the front edges of the triangle. The rectangle
and circle both have a separated shear layers at the front of the shape that move away from the center
symmetry lines and hence widen the wake area. The particle-laden wake of the circular cloud is wider than
the rectangle, since a secondary separated shear layer away from the symmetry line is induced by the back
half of the circle when the front half of the circle is compressed into the cloud by the accelerated flow.

We are currently characterizing the particle-laden flow developments of several particle cloud shapes and
particle materials in the accelerated flow behind running shocks and will report on the complete character-
ization of the particle-laden flow developments when a shock hits a cloud of particles at rest in the near
future.
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Vorticity |ω| Particle’s Trajectory

Figure 3. A snapshot of the vorticity magnitude |ω| (left column) and the trajectory of the particle clouds
(right column) for time t = 0.1, 0.225, 0.5, 0.75 (from top to bottom) as computed by the fifth order WENO-
Z/PSIC-5 method with ENO interpolation scheme. The dotted rectangle in the figures showed the original
shape and position of the particle clouds at t = 0 for easy reference. The shock Mach number is Ms = 3. The
number of grid points used in the Eulerian frame is 1500× 500 in the x and y directions respectively. The total
number of bronze particle clouds is 40K.
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Vorticity |ω| Particle’s Trajectory

Figure 4. A snapshot of the vorticity magnitude |ω| (left column) and the trajectory of the particle clouds
(right column) for time t = 0.1, 0.225, 0.5, 0.75 (from top to bottom) as computed by the fifth order WENO-
Z/PSIC-5 method with ENO interpolation scheme. The dotted triangle in the figures showed the original
shape and position of the particle clouds at t = 0 for easy reference. The shock Mach number is Ms = 3. The
number of grid points used in the Eulerian frame is 1500× 500 in the x and y directions respectively. The total
number of bronze particle clouds is 40K.

10 of 12

American Institute of Aeronautics and Astronautics



Vorticity |ω| Particle’s Trajectory

Figure 5. A snapshot of the vorticity magnitude |ω| (left column) and the trajectory of the particle clouds
(right column) for time t = 0.1, 0.225, 0.5, 0.75 (from top to bottom) as computed by the fifth order WENO-
Z/PSIC-5 method with ENO interpolation scheme. The dotted triangle in the figures showed the original
shape and position of the particle clouds at t = 0 for easy reference. The shock Mach number is Ms = 3. The
number of grid points used in the Eulerian frame is 1500× 500 in the x and y directions respectively. The total
number of bronze particle clouds is 40K.
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