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Abstract

A high-order implicit-explicit additive Rung-Kutta time integrator is implemented
in a particle-in-cell method based on a high-order discontinuous Galerkin Maxwell
solver for simulation of plasmas. The method satisfies Gauss law using a hyperbolic
divergence cleaner that transports divergence out of the computational domain at
several times the speed of light. The stiffness in the field equations induced by
high transport speeds is alleviated by an implicit time integration, while an explicit
time integration ensures a computationally efficient particle update. Simulations
on a plasma wave and a Weibel instability show that the implicit-explicit solver is
computationally efficient, allowing for computations with high divergence transport
speeds that ensure an accurate representation of the governing plasma equations.
The high-order method only requires two time steps per plasma wave period. Nu-
merical instability appears when the time step exceeds the plasma frequency time
scale. A divergence transport speed of approximately ten times the speed of light
is shown to be optimal, since it combines an accurate representation of Gauss law
with a small influence of numerical noise on the solution.

Key words: Time Integration, Particle-in-Cell, Plasmas, Additive Runge-Kutta,
Implicit-Explicit, High-Order.

1 Introduction

Particle-in-cell (PIC) methods have proved a valuable tool for the simulation
of a variety of space and laboratory plasma problems. In the PIC approach,
the electric and magnetic field are solved by means of the Maxwell equations
and/or a Poisson equation in the Eulerian framework. Charged plasma parti-
cles are forced by the fields and tracked in a Lagrangian framework. Particles
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are coupled with the field solver by weighting the sum of the Coulomb forces
onto the grid in the form of a charge or current density. A large class of plasma
problems with relevance to high power microwave generation and fusion prob-
lems can be accurately solved with particle-in-cell (PIC) methods.

PIC methods typically use explicit time integration. Even though plasma
physics are characterized by a large range of space and time scales, the phys-
ical stiffness of many plasma problems is relatively low. As a result, the time
step restriction induced by stability in explicit methods is not too severe. Since
explicit PIC methods are simple and computationally efficient, they have been
predominant.

The main stream PIC methods for computation of plasmas use the second
order-staggered grid for the electromagnetic field solver according to Yee [1].
A symplectic leap frog method is used to update the time. A major advantage
of the symplectic scheme is that it is momentum conservative. Downsides of
the leap frog are that they are limited to second order, and prone to disper-
sion errors. The leap frog method introduces a splitting between the particle
update and the electromagnetic field solver that limits temporal accuracy to
second order. Dispersion errors are highly dependent on a properly chosen
CFL criterion and uniform spatial grid spacing. The inherent diffusion and
dispersion of the low order method is limiting the long-time simulation of full
scale problems.

In Jacobs and Hesthaven [9] a PIC algorithm based on a high-order nodal
discontinuous Galerkin solver (DG-PIC) was introduced that addresses some
issues related to low order resolution. The high-order PIC solver is based
on the DG Maxwell’s solver [5] that ensures low dispersion, while providing
geometric flexibility and excellent stability properties. A consistent high-order
coupling between the particles and the Maxwell’s solver preserves the high
order resolution of the method. Time integration with a high-order Runge-
Kutta scheme ensures high-order temporal accuracy without splitting errors.
The high-order nature of the method also reduces errors resulting from the
finite grid instability.

In low order PIC the exact charge conserving scheme proposed in [14] is widely
used since it eliminates the need to directly impose Gauss law to ensure charge
conservation. This charge conservation is, however, very difficult to implement
in the high-order PIC, and explicit divergence control is necessary. The hyper-
bolic divergence cleaning discussed in [9; 13] was shown to be a particular good
choice. The DG discretization of the hyperbolic Maxwell equations is easily
extended to the hyperbolic divergence cleaning equations. The classic Boris
divergence cleaning method [1] requires the solution of a Poisson equation for
the correction potential. The DG approximation of the Poisson equation with
an elliptic character is more challenging and less established than DG approx-
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imations of hyperbolic equations. Moreover, the Boris method was shown to
be one order less accurate than the DG-PIC with hyperbolic cleaning.

A drawback of the hyperbolic cleaner is that it stiffens the PIC field solver.
The divergence is cleaned along characteristics whose speed is several times
the speed of light. With the increase of the largest characteristic speed, the
stable time step reduces for the field update, when explicit time integration
is used. The same smaller time step must be used for the particle update
that is coupled to the solver leading to unnecessary extra iterations of the
computationally expensive particle update.

A common method to relax the time step restriction is to use implicit time
integration. In the non-linear system of coupled Eulerian-Lagrangian equa-
tions the implementation of an implicit time update is, however, challenging
and comes at a high computational cost. In a second order formulation, im-
plicit formulations have been reported [8] and are shown to successfully cap-
ture low frequency plasma phenomena without resolving the high frequency
scales. In the method of moments [15] charge and current densities are updated
with separate approximate equations that follow from Taylor expansions. This
economizes and slightly simplifies implicit implementation. The simplifications
that one can make in these second order methodologies, however, don’t ex-
tend to high-order formulation. Moreover, the low-order methods tend lead to
geometric inflexibility, since they require an orthogonal spatial grid.

The hyperbolic cleaning does not require a full implicit formulation of both
the particles and the field. Only the field solver introduces the stiffness. The
stiffness of the particle solver is unchanged. The recently developed additive
Runge-Kutta method in [12] is perfectly suited to tackle a partially stiff prob-
lem. The implicit-explicit (IMEX) Runge-Kutta solver can be implicit in phys-
ical and geometrical region of high stiffness, whereas the scheme is explicit in
regions with low stiffness. In Kanevsky et al. [11] the method was applied for
computations with geometric stiffness.

In this paper we apply the IMEX method to the particle-in-cell method. We
solve the stiff field solver with hyperbolic cleaning implicitly, whereas particles
are accurately updated explicitly. We report significant computational time
savings in benchmark plasma problems, including the plasma wave and the
Weibel instability, while properly cleaning divergence.

This paper is organized as follows: In the next section we briefly present the
governing equations, including the hyperbolic cleaning equations. This is fol-
lowed by a summary of the spatial discretization of the high-order PIC method
based on DG. We then discuss time integration including explicit and IMEX
schemes. The IMEX schemes are tested in the next section on a plasma wave
and a Weibel instability. The final section is reserved for conclusions.
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2 Governing Models

2.1 Electromagnetic Field Equations with Hyperbolic Cleaning

We consider the Maxwell’s equations in TE form to describe the electromag-
netic field:

∂q

∂t
+ ∇ · F = J, (1)

where

q= [Ex, Ey, Bz]
T ,

F=
[

(0,−Bz,−Ey)
T , (Bz, 0, Ex)

T
]

,

J= [Jx, Jy, 0]T . (2)

Throughout E, B, and J represent the electric field, the magnetic field, and
the current density, respectively, while the subscripts identify the direction of
the vector field variable.

To satisfy divergence of E according to the Gauss law,

∇ · E = ρ (3)

we follow the hyperbolic cleaning approach described in [9; 13]. In this ap-
proach a correction potential is introduced into the Maxwell equations (1)
as a Lagrangian multiplier. In the strictly hyperbolic formulation [13], the
Maxwell’s equations, (1-3), are altered to

∂q

∂t
+ ∇ · F̃ = J

∂φ

∂t
= χ (ρ −∇ · E) − εφ, (4)

with the modified fluxes

F̃ =
[

(χφ,−Bz,−Ey)
T , (Bz, χφ, Ex)

T
]

. (5)

Here, ε is a damping constant. (4) is a strictly hyperbolic system of equations,
with four characteristic velocities, λ1,4 = χ,−χ and λ2,3 = −c, c, where c =
1 is the normalized speed of light. Compared to the uncorrected Maxwell
equations, two characteristics, propagating information at speed, χ, are added,
and one characteristic with zero velocity is omitted, hence eliminating the DC
component of the system.
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The χ characteristics effectively reduce the divergence error by propagating
it away at velocity χ. Taking χ ≫ c implies that the divergence error be
swept out of the domain very rapidly, effectively imposing Gauss’ law. As χ
approaches infinity, one recovers (1)-(3).

2.2 Particle Equations

Charged particles are individually traced in time in the Lagrangian frame

dxp

dt
=vp, (6)

dmvp

dt
= q (E + vp × B) . (7)

xp and mvp denote the non-dimensional particle coordinate and momentum,
respectively, with q and m representing the particle charge and mass. For high-

speed plasma the relativistic correction applies to m as m = m0/
√

(1 − |vp|2)
where m0 is the mass at rest.

2.3 Coupling of field and particle equations

The field equations are directly coupled to the particle equations through E

and B in (7). The particle equations are coupled to the field equations through
the charge density, ρ and current density, J, which are source terms in (4)

ρ(x) =
Np
∑

i=1

K(xp,x)q,

J(x) =
Np
∑

i=1

K(xp,x)qvp, (8)

where K(x, y) = K(|x − y|)/V is a normalized weighting function that dis-
tributes the influence of each particle onto the electromagnetic field. Np is the
total number of particles in a finite volume V .

3 Spatial Discretization

The spatial discretization does not affect the temporal schemes we discuss
in this paper. In principle, most spatial treatments can be implemented in-
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dependently of the temporal discretization. Since the focus of this paper is
on the temporal treatment, we only briefly summarize the spatial approxima-
tion of the coupled field and particle equations according to a particle-in-cell
method based on a nodal discontinuous Galerkin (DG) discretization of the
field equations (4). For a more detailed discussion, we refer to [9].

(1) and (4) are discretized with a high-order DG discretization on unstructured
grids [7; 5; 9]. In the DG approach, we subdivide the computational domain
into non-overlapping tetrahedral elements ensuring geometric flexibility. On
each element, we assume that the local solution can be represented as an
N ’th order polynomial qN (x, t). The polynomial is based on accurate, well-
conditioned nodes derived in [6].

To seek equations for the N local unknowns, we require the local approximate
solution, qN ,

∫

D

(

∂qN

∂t
+ ∇ · FN

)

Li(~x)d~x =
∮

∂D
Li(x)~̂n · [FN − F∗] dx + JN . (9)

Here, Li signifies the typical Galerkin test function, F∗ signifies a numerical
flux and ~̂n is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure
stability of the computational scheme. We use Lax-Friedrichs to determine
the numerical flux. Within the multi-element context, the DG formulation is
inherently discontinuous and yields a highly parallel local scheme. The scheme
is exponentially convergent with increasing N .

With the operators, M̂ij =
∫

D LiLjd~x, Ŝij =
∫

D ∇LjLid~x, F̂ij =
∮

∂D LiLjd~x,
we recover from (9) the fully explicit local scheme,

M̂
dq̂

dt
+ Ŝ · F̂ = F̂n̂ ·

[

F̂ − F̂∗

]

, (10)

where q̂ represents the 3N -vector of nodal values, qN , at D. Similarly, F̂a, F̂∗

denote nodal values for the flux and the numerical flux, respectively.

ρN and JN are determined according to (8) by the cumulative projection of
each particle onto the grid using the smooth weighting function

K(x, y) =
α + 1

πR2



1 −

(

|x − y|

R

)2




α

|x − y| = 0 · · ·R, (11)

where R is the radius of the spatial base of the function. α is a constant. With
increasing α the weight function tends to a delta function.
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The electric and magnetic field are determined at the particle position by
interpolation using the element based interpolant qN .

4 Temporal Discretization

The semi-discrete initial value problem remains after spatial discretization

dU

dt
= S(t,U(t)), U(t0) = U0 (12)

with

U =
[

qT ,xT

p ,vT

p

]T

(13)

This systems of ODEs may be integrated in time with any scheme.

4.1 Explicit Runge-Kutta Time Integration

In our recent high-order PIC method [9], we update (12) with 2N -storage,
high-order, explicit Runge-Kutta (ERK) methods,

wi = αiwi−1 + ∆tS(ti−1,U
(i−1)),

U(i) = U(i−1) + βiwi,











i = 1, 2, ..., s, (14)

where α1 = 0 for the algorithm to be self-starting, U(0) = Un−1, U(s) = Un,
and ti = tn−1 + ci∆t. This is a 2N storage scheme, since only U and w require
storage.

The five stage, s=5, scheme by Carpenter and Kennedy [3] was shown to
conserve the particle momentum well with only a slight dissipation. The high-
order nature of the ERK scheme and high-order discontinuous Galerkin space
discretization leads to minimal dispersion. The ERK schemes are efficient and
simply implemented.

However, the CFL stability criterion restricts the time step size according to

∆t <= ∆tstab = CFL × min
Ω

[

∆x

λ

]

(15)
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where ∆x represents a grid spacing and λ an eigenvalue matrix of S in (12).
CFL depends on the stability regions of the RK method [11]. For problems
that have high geometry or physics induced stiffness the time step may be
very small leading to excessive computation in unsteady problems.

4.2 Implicit-Explicit Time Integration

When hyperbolic divergence cleaning is used the largest eigenvalue is deter-
mined as λ = χ which is typically at least a factor five times the speed of
light. The time step required to update the field is then much smaller than
the required time step for an accurate particle update.

We implement the additive Runge-Kutta scheme by Kennedy and Carpenter
[12] to implicitly update the stiff field equations, while economically updating
the particles in an explicit manner. The scheme can in principle be of any
order, N . Here, we consider the six stage fourth order scheme.

The s stage, N additive Runge-Kutta method approximates (12) as

U(i) =U(n) + (∆t)
N
∑

ν=1

s
∑

=1

aν
ijS

ν
(

t(n) + cj∆t,U(j)
)

(16)

U(n+1) =U(n) + (∆t)
N
∑

ν=1

s
∑

=1

bν
i S

ν
(

t(n) + ci∆t,U(i)
)

(17)

where superscripts (n) identify a variable at t(n). Superscripts (i) indicate
a variable at time t(n) + ci∆t at stage i. Runge-Kutta methods are based on
polynomial fits through intermediate nodes at t(n)+ci∆t. In the IMEX method
an explicit and implicit integration is formulated at the same nodes ci.

We split U in (13) into an explicit and implicit part as

U =







U[im]

U[ex]





 . (18)

We take ν=1 and 2 in (17) for the explicit and implicit integration, respec-
tively.

The particles are integrated explicitly, U[ex] =
[

xT

p ,vT

p

]T

, with the explicit
Runge-Kutta coefficients presented in Butcher tableaux format,
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ci aij

bi

in Appendix A. The fluid U[im] = q is integrated implicitly with a singly-
diagonally implicit Runge-Kutta solver. The coefficient are presented in a
Butcher tableaux format in Appendix A.

The charge density, ρ
(i)
N , and current density, J

(i)
N , at stage i are required for the

implicit field update to stage i and are determined with the particle coordinate
at stage i also. The particle trace therefore needs to be updated from stage
i − 1 to i explicitly before the field may be update implicitly.

With the source terms determined, it remains to update the approximated
Maxwell’s field equations with hyperbolic cleaning (9) implicitly,

U
(i)
[im] = U

(n)
[im] + ∆t

s−1
∑

j=1

a
(2)
ij S

(

t(n) + cj∆t,U(j)
)

a
(2)
ii ∆tS

(

t(n) + ci∆t
)

. (19)

In the singly-diagonally Runge-Kutta scheme a
(2)
ii has the same value for all

stages and a
(2)
ij = 0 ∀ j > i. Solving for terms at (i) using (10), we can thus

rewrite (19)

q(i) − ∆ta
(2)
ii

[

M̂−1Ŝ · F̂(i) + M̂−1F̂n̂ ·
[

ˆF(i)] − F̂∗]
](i)
]

=

∆t
i−1
∑

j=1

a
(2)
ij S

(

t(n) + cj∆t,U(j)
)

(20)

where the right hand side can be determined at each stage i. The fluxes in the
hyperbolic cleaning equations, F, contain only linear operators on q and F(i)

and q(i) are linearly related. So, (20) represents a linear system of equations

Aq(i) = b. (21)

In DG approximations A is a very sparse matrix. Fast direct solvers are avail-
able to determine its inverse [4]. Since aii is the same for all stages i = 1, .., 6,
the inverse can be stored and reused throughout the time integration. For
large systems standard iterative solvers can be implemented.
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5 Tests

In this section we will illustrate the performance of the IMEX method in
simulations of a one-dimensional plasma wave and a two dimensional Weibel
instability.

5.1 Plasma Wave

We consider the simulation of a plasma wave using a quasi-electrostatic field
solver based on the hyperbolic cleaning. Neglecting the magnetic field, we
consider the hyperbolic field equations that govern the electric field:

∂q

∂t
+ ∇ · F = S, (22)

with

q= [Ex, Ey, φ]T ,

F=
[

(χφ, 0,−χEx)
T , (0, χφ,−χEy)

T
]

,

S= [0, 0, χρ]T . (23)

In the limit that χ → ∞ these equations reduce to the Gauss law used for
conventional electrostatic field solvers. The particles are updated with

dxp

dt
=vp, (24)

dvp

dt
= q/mE (25)

We follow the setup of the problem described in [9]. We set χ = 10, which was
shown in [9] to give an accurate, matching result with published data [1].

The stable time step for the explicit field solver is determined with (15) with
the largest eigenvalue |λ| = χ, ∆x the minimum grid spacing. CFL is now
dependent on the stability regions of the Runge-Kutta methods as discussed in
[11]. In the explicit Runge-Kutta (ERK) method in (14) CFLmax ∼ 2.8. The
explicit part of the implicit-explicit method (IMEX-ERK) has a comparable
stability region to the ERK. The implicit part of the IMEX is L-stable, and
has no time step restriction.
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We first establish that the various schemes achieve their formal fourth order
convergence rate. Since no analytical plasma results are available, we study
convergence by comparing results computed with CFL > 0.25 to a result
computed with CFL = 0.25 at time t = 0.5 in the development of the plasma
wave.

Figure 1 shows the L2 error in the Ex field so determined. Both ERK and
IMEX are fourth order accurate conform their formal convergence rate. Nat-
urally, the ERK results cannot be obtained beyond CFL > 3. IMEX is stable
at CFL = 256. The error stops following the formal rate for CFL > 64, when
the time step is on the order of the time period of the plasma wave and the
time step is too large to capture the smallest plasma time scale.

−4 −3 −2 −1 0
−16

−14

−12

−10

−8

−6

−4

log (∆ t)

lo
g 

(L
2 e

rr
or

)

ERK
IMEX

∆ t4

Fig. 1. L2 error plotted versus time step for a plasma wave computation with an
explicit and IMEX hyperbolic cleaning solver.

In a plasma wave the field potential energy, E2
x +E2

y is exchanged with kinetic
energy of the particles (Fig. 2a). The divergence, which should be zero accord-
ing to the Gauss law, also shows a periodic trend in Fig. 2b. The solution is
resolved with an acceptable level of divergence at χ=10 [9] for CFL < 64. At
CFL = 128, the solution is eyeball inaccurate. At CFL = 64 only two time
steps are taken to resolve one time period of the plasma wave. With six stages
per Runge-Kutta step this gives around 12 time nodes to resolve one sinus
plasma wave in time. This is consistent with a lower resolution requirement
for higher order methods.

We computed the plasma wave in Matlab and used a built-in conjugate gra-
dient iterative solver to solve the linear system in (21). The IMEX solver was
about thirty percent slower than the ERK solver. The IMEX scheme allowed
for a time step that was twenty times larger, while the results are accurate.
IMEX thus significantly improves the computation efficiency.
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Fig. 2. Potential energy and divergence trends for a plasma wave computation with
IMEX hyperbolic cleaning solver at various CFL.

5.2 Weibel Instability

We repeat the simulation of the Weibel instability as outlined in [9]. The
governing system of equations is described in section 2. The Weibel instability
simulations are performed on a unit square with periodic boundary conditions.
We consider a quasi-neutral plasma with a thermal velocity ratio of 5 of the
velocity in x, uthe = 0.25, and y, vthe = 0.05, direction. The plasma frequency
is fifteen times the length of the square, i.e., ωpe = 15 resulting in q

m
= −(15π)2

with the electron charge density set to ρ = −1.We track 300 × 300 particles
in this domain for two time units. We performed computations with a code
programmed in the C-language on a Beowulf cluster with four Intel Xeon 5110
processors per node at 1.60GHz.

With the IMEX solver we can perform affordable simulations of this flow with
much higher values of χ than reported in [9; 10]. At higher χ the hyper-
bolic cleaning equations in (4) are more accurately representing the system of
Maxwell’s equations plus Gauss law that govern the plasma physics. However,
when increasing χ the total energy exhibits a larger increase in time (Fig. 3).
This indicates a less accurate capturing of the physical conservation of energy.

The total energy increase is caused by increases in the kinetic energy and
electric energy trend. With increasing χ the electric field responds faster to
changes and in the charge density, ρ. The noise levels in the charge density field
that are typically high in PIC simulations (Fig. 4a), thus yield an increase in
the noise levels in the electric energy with the faster response of the hyperbolic
cleaner to changes in ρ. The increased electric energy is via the Lorenz force
also directly responsible for faster moving particles and hence larger kinetic
energy of the plasma. The increased electric and kinetic energy lead to an un-
physical increase in total energy. The magnetic field energy appears unaffected
by changes in χ, consistent with the hyperbolic formulation that doesn’t affect
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the equation for q(3) = Hz in the original Maxwell’s equations.
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Fig. 3. Comparison of various plasma energy components for computations of the
Weibel instability with hyperbolic divergence cleaning with χ=10,20,50 and 100 and
an IMEX time integration.

The divergence cleaning performance is comparable for all χ considered here.
The noise in ρ typical for PIC methods (Fig. 4a) is mostly responsible for the
divergence magnitude. The magnitude of χ only slightly reduces the divergence
(Fig. 4b). With the increases in noise in the energy trends and the lack of
divergence cleaning improvement, it would appear unwise to increase χ beyond
a value of ten.

For a stable explicit time integration, the time damping constant must be
ε ≤ ∆tstab. The implicit time integration has no stability restrictions and hence
the damping constant may be taken any value. With a reduced damping the
fluctuations in the correction potential, φ, are smaller. The smaller fluctuations
are translated to the electric field as seen by the reduced magnitude of the
electric energy and the reduced amplitude of the fluctuations in the electric
energy trend (Fig. 5d). The decreases in the electric energy trend lead to a
decrease in kinetic energy and total energy whereas the magnetic energy trend
is unaffected. When no damping is applied, i.e. ε=0, the solution only slightly
deviates from the solution with a damping of ε = ∆t/4.

13



x

-0.4
-0.2

0
0.2

0.4

y

-0.4
-0.2

0
0.2

0.4

rh
o

-2.0E-03

0.0E+00

2.0E-03

0 0.5 1 1.5 2
time

�0.002�0.0010
0.001

0.002

0.003

di
ve

rg
en

ce

xi=100, eps=1/dt
xi=10, eps=1/dt
xi=100, eps=0

ε

εχ

χ

χ ε

(a) (b)

Fig. 4. (a) Surface plot of the instantaneous charge density, ρ. (b) Comparison of
divergence for computations of the Weibel instability with hyperbolic divergence
cleaning with χ=10,20,50 and 100 and an IMEX time integration.
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Fig. 5. Comparison of various plasma energy components for computations of the
Weibel instability with hyperbolic divergence cleaning with ε = 1/∆t, 0.5/∆t,
0.25/∆t, and 0 and an IMEX time integration.

For the above cases, we have taken the time step smaller than the stable time
step, ∆tstab, that would be required for time integration of the Maxwell equa-
tions without hyperbolic cleaning in (1). This “stable” time step is determined
with (15) taking λ = c, where c is the speed of light. Since the implicit hyper-
bolic cleaner does not have a stability restriction on the time step, we can take
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∆t > ∆tstab. The Weibel instability is accurately computed for ∆t = 2∆tstab

(Fig. 6). With the increased ∆t the total energy trend shows a slight increase,
which is attributed to the finite grid instability. To prevent grid significant
grid heating in PIC the time step has to satisfy ∆t < 2/ωpe = 2/15. When
∆t > 4∆tstab, this stability criterion is violated, and the PIC simulation is
unstable.
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Fig. 6. Comparison of various plasma energy components for computations of the
Weibel instability with hyperbolic divergence cleaning with ∆t = ∆tstab, 2∆tstab,
and 4∆tstab, and an IMEX time integration.

If a direct solver is used to solve (21), the implicit time integration of the con-
tinuum field equations is a factor 14 slower than the explicit time integration.
The particle update, however, is far more computational expensive than the
field update and hence the computational cost of particle-in-cell simulations
are dominated by the particle solver. The Weibel instability, for example, is
computed with 880 time steps per wall clock hour, whereas the computa-
tional speed of the pure implicit electromagnetic field with the same grid is
14,500 time steps per hour. Since the computational efficiency of the explicit
and IMEX particle time integration is comparable, the penalty of the implicit
field solver is negligible as compared to the explicit particle-in-cell solver. The
alleviation of the time step by the IMEX method thus directly translates to
improved computational efficiency of the PIC with IMEX compared to explicit
PIC.
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6 Conclusions

We have implemented a high-order implicit-explicit Runge-Kutta time inte-
gration scheme for simulations of plasmas with particle-in-cell methods that
use hyperbolic cleaning methods to satisfy Gauss law. An implicit solver up-
dates the stiff field equations, while an explicit solver updates the particle
equations.

The implicit-explicit method improves upon computational efficiency when
the hyperbolic cleaner is used. The governing hyperbolic cleaning model more
accurately represents the governing, physical electromagnetic model, when
cleaning along characteristics with increasing speeds larger than the speed of
light. The implicit-explicit method firstly alleviates the increasingly restrictive
time step of the hyperbolic cleaning method with increasing speed. Secondly,
the non-stiff particle model is at the same time inexpensively updated in an
explicit manner.

The penalty in computational time of the implicit-explicit particle-in-cell solver
as compared to the explicit solver is minimal for the linear electromagnetic
equations. The discretization of the linear electromagnetic equations yields
a cheaply directly invertible system of equations. Moreover, the single diag-
onally Runge-Kutta method reuses the same inverse of the linear system of
equations that can thus be stored in memory and reused. Sparse direct solvers
solve the system at low cost. Moreover, the particle time integration is more
computationally expensive then the field solve and is mostly determining the
computational efficiency of the algorithm. Since the computational cost of the
explicit particle update in explicit and IMEX particle-in-cell is comparable,
the alleviation in time step by the implicit time integration thus translates
nearly completely to computation efficiency improvement.

With an implicit-explicit time integration, the time step may be increased
beyond the stable time step required for pure electromagnetic solver (without
hyperbolic cleaning) leading to a true implicit solver. The time step in PIC is
then restricted by the finite grid instability as ∆t < 2/ωpe, where ωpe is the
plasma frequency.

We have shown that the implicit-explicit particle-in-cell method based on a
discontinuous Galerkin discretization in space has formal fourth order accuracy
in time. The fourth order scheme only requires two time steps to resolve one
period of a plasma wave improving over the time resolution typically required
for low order methods.

We suggest that the speed of the characteristic, χ, along which divergence is
cleaned should be optimally taken at approximately χ = 10. For χ < 10 it
was shown that the governing equations are inaccurately represented by the
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hyperbolic cleaner [9]. On the other hand, with increasing χ, the the charge
density, ρ is more tightly coupled to the electric field and numerical noise in ρ
is increasingly passed onto the electric energy and kinetic energy. As a result
the total energy was found to unphysically increase for larger χ. Ergo, taking
χ > 10 is not advisable based on the tests performed in this paper.

A damping on the divergence, that is convected away by the hyperbolic clean-
ing method, reduces numerical noise in the electric field and improves the
accuracy of total energy conservation.

We conclude finally that the implicit-explicit method should be generally ap-
plicable to particle-mesh methods that have a discrepancy in stiffness between
the continuum and particle phase.
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Table I
The explicit Runge-Kutta coefficients of the additive Runge-Kutta scheme presented
in a Butcher tableau.
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Table II
The single diagonal implicit Runge-Kutta coefficients of the additive Runge-Kutta
scheme presented in a Butcher tableau.
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