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Abstract

A high order particle-source-in-cell (PSIC) algorithm is presented for the computation of the interac-
tion between shocks, small scale structures, and liquid and/or solid particles in high-speed engineering
applications. The improved high order finite difference weighted essentially non-oscillatory (WENO-Z)
method for solution of the hyperbolic conservation laws that govern the shocked carrier gas flow, lies at
the heart of the algorithm. Finite sized particles are modeled as points and are traced in the Lagrangian
frame. The physical coupling of particles in the Lagrangian frame and the gas in the Eulerian frame
through momentum and energy exchange, is numerically treated through high order interpolation and
weighing. The centered high order interpolation of the fluid properties to the particle location is shown to
lead to numerical instability in shocked flow. An essentially non-oscillatory interpolation (ENO) scheme
is devised for the coupling that improves stability. The ENO based algorithm is shown to be numerically
stable and to accurately capture shocks, small flow features and particle dispersion. Both the carrier gas
and the particles are updated in time without splitting with a third order Runge-Kutta TVD method.
One and two dimensional computations of a shock moving into a particle cloud demonstrates the charac-
teristics of the WENO-Z based PSIC method (PSIC/WENO-Z). The PSIC/WENO-Z computations are
not only in excellent agreement with the numerical simulations with a third order Rusanov based PSIC
and physical experiments in [Boiko et al. Shock Waves 7, 1997], but also show a significant improvement
in the resolution of small scale structures. In two dimensional simulations of the Mach 3 shock moving
into forty thousand bronze particles arranged in the shape of a rectangle, the long time accuracy of the
high order method is demonstrated. The fifth order PSIC/WENO-Z method with the fifth order ENO
interpolation scheme improves the small scale structure resolution over the third order PSIC/WENO-Z
method with a second order central interpolation scheme. Preliminary analysis of the particle interac-
tion with the flow structures shows that sharp particle material arms form on the side of the rectangular
shape. The arms initially shield the particles from the accelerated flow behind the shock. A reflected
compression wave, however, reshocks the particle arm from the shielded area and mixes the particles.
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1 Introduction

High-speed gas flows encountered in supersonic aircraft, hypersonic space vehicles, gas turbines and explo-
sions are commonly modeled through the nonlinear hyperbolic conservation laws in the form

∂Q

∂t
+ ∇ · F(Q) = 0. (1)

where Q is a vector of conservative variables and F is the flux vector. Shocks are typical in these high-speed
flows and can appear as finite time singularity solutions in the conservation laws.

For the capturing of shock solutions in numerical approximations of (1) many nonlinear shock capturing
schemes have been devised, e.g. TVD, PPM, ENO, CENO and WENO schemes. Among these schemes, the
high order, high resolution finite difference Weighted Essentially Non-Oscillatory schemes (WENO) [1, 2]
have proven to be very effective in capturing the fine scale and delicate structures of the physical phenomena
involving large gradients and shocks. The classical WENO schemes owe their success to the use of a dynamic
set of stencils, where a nonlinear convex combination of lower order polynomials adapts either to a higher
order approximation at smooth parts of the solution, or to an upwind spatial discretization that avoids
interpolation across discontinuities and provides the necessary dissipation for shock capturing. The nonlinear
coefficients of the convex combination, hereafter referred to as weights, are based on the local smoothness
indicators, which measure the sum of the normalized squares of the scaled L2 norms of all derivatives of the
lower order polynomials [2]. An essentially zero weight is assigned to those lower order polynomials whose
underlining stencils contain high gradients and/or shocks, yielding an essentially non-oscillatory solution at
and near discontinuities. At smooth parts of the solution, higher order is achieved through the mimicking
of the central upwinding scheme of maximum order, when all smoothness indicators are about the same
size. The classical WENO schemes are designed based on the successful class of high order schemes called
the essentially non-oscillatory, or ENO schemes of Harten et al. [3, 4, 5]. The first classical WENO scheme
was introduced by Liu et al. in their pioneering paper [6], in which a third order accurate finite volume
WENO scheme was designed. In 1996, Jiang and Shu [2] provided a general framework to construct arbitrary
order accurate finite difference WENO schemes, which are more efficient for multi-dimensional calculations.
Higher order finite difference classical WENO schemes are designed in [1]. Improvement of the classical
WENO scheme, namely the mapped WENO scheme [7] and WENO-Z scheme [8], was also derived. In
this study, the high order WENO-Z scheme is employed. In comparison to classical WENO schemes, the
WENO-Z method has a lower dissipation in combination with a proven formal order of accuracy [8]. As a
result the method captures shock in a physically sharp manner, while the high order and high resolution
nature of the scheme ensures an efficient and accurate resolution of small scales in smooth regions.

In many high-speed flow applications, shocks interact with solid or liquid particles. For example, debris
interacts with shocks and gas turbulence in dust explosions. In lithotripsy, kidney stones are broken into
smaller kidney stone particles by means of shocks. Fuel droplets interact with a chemically reacting gas
containing shock waves in high-speed combustors. When the flow containing shocks is turbulent, the scale
range of the continuum flow is enormous. The mutual exchange of momentum and energy of particles and
the continuum flow results in even more complex, multi-scale physics. The tremendous complexity of the
problem leaves many physical phenomenon less understood.

The direct analysis requires the computation of the complete flow over each particle, the tracking of
individual solid or liquid complex particle boundaries along their paths, and the tracking of shock waves
in the moving frame. These individual computational components are difficult to resolve and currently
barely within reach even with the latest advances of computational technologies. The combined interaction
between flows with shocks and particles has an immense complexity, scale range and size, that can currently
potentially be analyzed only in highly idealized situation with a few particles.

Simplified models for the particle and the particle interactions with the shock containing carrier gas
are required to handle more realistic situation in applications of shocked particle-laden flows. The point
particle modeling in the Particle-Source-in-Cell (PSIC) method introduced by Crowe et al. [9] provides such
a model that enables larger scale analysis. The PSIC method is a particle-mesh type algorithm, that is
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also commonly used for simulation of plasma [10]. In particle-mesh type methods, the continuum model
is approximated on a static mesh, while the particle dynamics are traced along their path in a Lagrangian
frame. The static mesh solution and the dynamic particle mesh solution are subsequently coupled through
interpolation. In the PSIC method, particles are assumed to have a single point contribution. Point particles
are carried by the carrier gas flow that is governed by a continuum equation, which in this study are the Euler
equations governing the gas dynamics in an Eulerian frame. The influence of the particles on the carrier gas
flow is modeled through point sources and appears as source terms in the continuum equations. The point
modeling permits the simulation of a large number of particles and provides sufficient resolution and accuracy
to model the particle-laden flows. Particle-mesh is the only method that facilitates affordable computations
of real geometries, while accurately representing individual particle dynamics. The Cloud-In-Cell (CIC) [11]
modeling enhances the computational feasibility by decreasing the modeling level of the particle. Rather
than modeling a single particle, a cloud of particles is modeled as point contribution in CIC. The individual
cloud dynamics are traced in the Lagrangian frame like in the single particle model. While with the cloud
modeling some of the particle detail is less, it can be shown to be sufficiently accurate for most practical
applications [11]. In this study, we shall refer to particle clouds as particles unless specified otherwise.

The particle-mesh method typically relies on relatively simple, coarse grids and/or low order numerical
schemes (typically first or second order schemes). This limits the treatment of realistic problems with a large
range of active temporally and spatial scales. Dispersion, diffusion and aliasing errors are well-known to
plague the spatial accuracy of the solution [10]. To reduce these errors, high order high resolution numerical
algorithms are essential for efficient long time simulation of the shock-particle-laden flow [13]. In Jacobs
and Hesthaven [14, 15], a high-order based particle-mesh method for simulation of plasma was shown to
reduce these errors. The high-order, high-resolution WENO methods were also shown to capture small
scales structures more accurately and efficiently than the lower order schemes in the long time simulation of
the Richtmeyer-Meshkov Instability [16].

The main purpose of this study is to extend the advantages of high order methods to a high order PSIC
method based on the high-order, high-resolution WENO-Z scheme (PSIC/WENO-Z). We propose a high
order ENO interpolation from the carrier flow to the particles and a high order weighing of the momentum
and energy from the particle to the carrier flow, yielding a high order solution of particle-laden gas flow
with shocks in the Eulerian-Lagrangian frame. We also identify future improvements and extension of the
algorithm to more realistic applications.

We first validate the the PSIC/WENO-Z method and verify accuracy and efficiency improvements with
the one dimensional numerical lower PSIC simulation and experiments in Boiko et al. [12]. We then present
the two dimensional simulation of shock interaction with 40K bronze particle arranged in a rectangular shape
in front of a Mach 3 shock. The setup is the same as the one used in the numerical experiment with PSIC
method based on a third order Rusanov scheme in [13] except that the flow is assumed to be periodical in the
y direction. At early times the large and small scales structures are similar to the results in [13] . We show
that the capturing of small scale with a fifth order PSIC/WENO-Z method is superior to the capturing with
a third order PSIC/WENO-Z method. We illustrate long time accuracy of high order PSIC/WENO-Z with
new results of the shock-particle interaction for long time evolution of the particle-laden flow field in a large
physical domain. The behavior of the flow and particle trajectories shows a strong nonlinear interaction and
coupling of the carrier flow and the particles and warrants a further detailed numerical and experimental
investigation.

This paper is organized as follows: In section 2, the physical model of the carrier flow and the particles
are presented. In section 3, we give a brief description of the improved fifth order weighted essentially non-
oscillatory finite difference WENO-Z scheme for hyperbolic conservation laws. In section 4 the coupling of
the carrier flow in the Eulerian frame and the particle in the Lagrangian frame is discussed in detail. We
present the high order ENO interpolation scheme that is used to interpolate the gas properties from the
Eulerian frame to the particle in the Lagrangian frame. The high order weighing for exchange of momentum
and energy from the particle in the Lagrangian frame to the carrier gas at a grid point in the Eulerian
frame are also given. Numerical experiments with the PSIC/WENO-Z method are discussed in section
5. The high order PSIC/WENO-Z method is validated against existing one dimensional numerical results
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and experimental data. The long time accuracy is also demonstrated in long time simulations of the two
dimensional shock interaction with 40K bronze particle. Conclusions and direction of future research are
reserved for the final section 6.

2 The Physical Model and Particle-Source-In-Cell Method

In the particle-source-in-cell (PSIC) method the Eulerian continuum equations are solved for the carrier flow
in the Eulerian frame, while particles are traced along in the Lagrangian frame. In the following, we present
the coupled system of Euler equations that govern the gas flow and kinematic equations that govern the
particle motion. We shall denote the subscript p for the particle variables and f for the gas variables at the
particle position. Variables without subscript refer to the gas variables unless specified otherwise.

2.1 Euler equation in the Eulerian frame

The governing equations for the carrier flow are the two-dimensional Euler equations in Cartesian coordinates
given by:

Qt + Fx + Gy = S, (2)

where

Q = (ρ, ρu, ρv, E)
T

,

F =
(

ρu, ρu2 + P, ρuv, (E + P )u
)T

, (3)

G =
(

ρv, ρuv, ρv2 + P, (E + P )v
)T

,

and

P = (γ − 1)

(

E − 1

2
ρ
(

u2 + v2
)

)

, γ = 1.4. (4)

The equation of state closes the system of equations

T =
γPM2

ρ
, (5)

where M = U/
√

γRT is a reference Mach number determined with the reference velocity, U and reference
temperature, T . The source term, S, accounts for the effect of the particles on the carrier gas and will be
discussed in more detail below.

2.2 Particle equation in the Lagrangian frame

Particles are tracked individually in the Lagrangian frame. The kinematic equation describing the particle’s
position ~xp, is given as

d~xp

dt
= ~vp, (6)

where ~vp is the particle velocity vector.
The particles’ acceleration is governed by Newton’s second law forced by the drag on the particle. With

particles assumed spherical, we take the drag as a combination of the Stokes drag corrected for high Reynolds
and Mach number and the pressure drag leading to the following equations governing the particle velocity
[12],

d~vp

dt
= f1

(

~vf − ~vp

τp

)

− 1

ρp
∇P |f , (7)
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where ~vf is the velocity of the gas at the particle position, and ρp the particle density. The first term on the
right hand side describes the particle acceleration resulting from the velocity difference between the particle
and the gas. The second term in the right hand side of (7) represents the particle acceleration induced by
the pressure gradient in the carrier flow at the particle position. The particle time constant τp = Red2

pρp/18,
where dp is the particle diameter, is a measure for the reaction time of the particle to the changes in the
carrier gas. Re = UL/ν is the Reynolds number of the carrier gas flow with L a reference length and ν the
dynamic viscosity. In this study, we assume Re large and we therefore do not model viscous effects in the
governing Eulerian equations for the gas flow (2).

f1 is an empirical correction factor [12] that yields an accurate determination within 10% of measured
particle acceleration for higher relative particle Reynolds number up to Ref = |~vf − ~vp|dp/ν = 1 × 104 and
relative particle Mach number up to Mf = |~vf − ~vp|/

√

Tf = 1.2 and is given by

f1 =
3

4

(

24 + 0.38Ref + 4
√

Ref

)

(

1 + exp

[

−0.43

M4.67
f

])

. (8)

From the first law of thermodynamics and Fourier’s law for heat transfer, the equation for temperature
is derived as,

dTp

dt
=

1

3

Nu

Pr

(

Tf − Tp

τp

)

, (9)

where Pr = 1.4 is the Prandtl number, taken as its typical value for air in this paper. Nu = 2+
√

RefPr0.33

is the Nusselt number corrected for high Reynolds number.

2.3 Source term S for the Euler equation

Each particle generates a momentum and energy that affects the carrier flow. The volume averaged summa-
tion of all these contributions gives a continuum source contribution on the momentum and energy equation
in (2) as:

~Sm(~x) =

Np
∑

i=1

K(~xp, ~x) ~Wm, (10)

Se(~x) =

Np
∑

i=1

K(~xp, ~x)( ~Wm · ~vp + We), (11)

where K(x, y) = K(|x − y|)/V is a normalized weighing function that distributes the influence of each

particle onto the carrier flow. ~Wm = mpf1(~vf − ~vp)/τp and We = mp(Nu/(3Pr)) (T − Tp) /τp are weigh
functions describing the momentum and energy contribution of one particle, respectively. mp is the mass of
one spherical particle which can be derived from τp. Np is the total number of particles in an finite volume
V . The high order normalized weighing function will be discussed in section 4.

3 Improved Weighted Essentially Non-Oscillatory Schemes

In this section we briefly describe the fifth-order weighted essentially non-oscillatory conservative finite
difference scheme (WENO-Z) [8] when applied to hyperbolic conservation laws as in (1). Higher order
versions up to eleventh order of the WENO-Z scheme have been developed and will appear in another
article. Without loss of generality, we will restrict our discussion to the one dimensional scalar case and
the fifth order WENO-Z reconstruction step. The extension to a system of equations and to higher spatial
dimensions is straightforward in the Cartesian coordinates.

Consider a uniform grid defined by the points xi = i∆x, i = 0, . . . , N , which are also called cell centers,
with cell boundaries given by xi+ 1

2
= xi + ∆x

2
, where ∆x is the uniform grid spacing. The semi-discretized
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xi xi+1 xi+2xi-1xi-2 xi+1/2

S2

S0

S1

S5 τ5

β0

β2

β1

Figure 1: The computational uniform grid xi and the five points stencil S5, composed of three 3-points
stencils S0, S1, S2, used for the fifth-order WENO reconstruction step.

form of (1), by the method of lines, yields a system of ordinary differential equations

dui(t)

dt
= − ∂f

∂x

∣

∣

∣

∣

x=xi

, i = 0, . . . , N, (12)

where ui(t) is a numerical approximation to the point value u(xi, t).
A conservative finite-difference formulation for hyperbolic conservation laws requires high-order consis-

tent numerical fluxes at the cell boundaries in order to form the flux differences across the uniformly-spaced
cells. The conservative property of the spatial discretization is obtained by implicitly defining the numerical
flux function h(x) as

f(x) =
1

∆x

∫ x+∆x
2

x−∆x
2

h(ξ)dξ,

such that the spatial derivative in (12) is exactly expressed by a conservative finite difference formula at the
cell boundaries,

dui(t)

dt
=

1

∆x

(

hi+ 1
2
− hi− 1

2

)

, (13)

where hi± 1
2

= h(xi± 1
2
).

High order polynomial interpolations to hi± 1
2

are computed using known grid values of f , fi = f(xi).

The fifth-order WENO-Z scheme uses a 5-points stencil, hereafter named S5, which is subdivided into
three 3-points stencils {S0, S1, S2}, as shown in Fig. 1. The fifth-order polynomial approximation f̂i± 1

2
=

hi± 1
2

+ O(∆x5) is built through the convex combination of the interpolated values f̂k(xi± 1
2
), in which fk(x)

is the third degree polynomial below, defined in each one of the stencils Sk:

f̂i± 1
2

=

2
∑

k=0

ωZ

k f̂k(xi± 1
2
), (14)

where

f̂k(xi+ 1
2
) = f̂k

i+ 1
2

=

2
∑

j=0

ckjfi−k+j , i = 0, . . . , N. (15)
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The ckj are Lagrangian interpolation coefficients (see [2]), which depend on the left-shift parameter k = 0, 1, 2,
but not on the values fi.

The WENO-Z weights ωZ

k are defined as

ωZ

k =
αZ

k
∑2

l=0
αZ

l

, αZ

k =
dk

βZ

k

, k = 0, 1, 2. (16)

The coefficients d0 = 3

10
, d1 = 3

5
, d2 = 1

10
are called the ideal weights since they generate the central upstream

fifth-order scheme for the 5-points stencil S5. The weights ωZ

k are a function of the smoothness indicators
βZ

k , namely,

βZ

k =

(

1 +

(

τ5

βk + ǫ

)2
)

, (17)

where ǫ is a small number (typically ǫ = 10−12) used to avoid the division by zero in the denominator of
(17) and the classical smoothness indicators βk measure the regularity of the kth polynomial approximation

f̂k(xi) at the stencil Sk and are given by

βk =

2
∑

l=1

∆x2l−1

∫ x
i+ 1

2

x
i− 1

2

(

dl

dxl
f̂k(x)

)2

dx. (18)

The expression of the βk in terms of the cell averaged values of f(x), fi are given by

β0 =
13

12
(fi−2 − 2fi−1 + fi)

2
+

1

4
(fi−2 − 4fi−1 + 3fi)

2
, (19)

β1 =
13

12
(fi−1 − 2fi + fi+1)

2 +
1

4
(fi−1 − fi+1)

2 , (20)

β2 =
13

12
(fi − 2fi+1 + fi+2)

2
+

1

4
(3fi − 4fi+1 + fi+2)

2
. (21)

and

τ5 = |β0 − β2| . (22)

All βZ

k are smaller than unity and they are all close to 1 at smooth parts of the solution.
The general idea of the weights definition (16) is that on smooth parts of the solution the smoothness

indicators βk are all small and about the same size, generating weights ωk that are good approximations
to the ideal weights dk. On the other hand, if the stencil Sk contains a discontinuity, βk is O(1) and the
corresponding weight ωk is small relatively to the other weights. This implies that the influence of the
polynomial approximation of hi± 1

2
taken across the discontinuity is diminished up to the point where the

convex combination (14) is essentially non-oscillatory. Fig. 1 shows the case where stencil S2 is discontinuous,
yielding β0 and β1 to be much smaller than β2. By (16), this results on ω2 being a small number in the
convex combination (14).

The process synthesized by (14)-(15) is called the WENO reconstruction step, for it reconstructs the
values of h(x) at the cell boundaries of the interval Ii = [xi− 1

2
, xi+ 1

2
] from its cell averaged values f(x) in

the stencils {Sk, k = 0, 1, 2}.
Following [1], the hyperbolicity of the Euler equations (29), ignoring the source term S, admits a

complete set of right and left eigenvectors for the Jacobian of the system. The eigenvalues and eigenvectors
are obtained via the linearized Riemann solver of Roe [21]. The first order Lax-Friedrichs flux is used as
the low order building block for the high order reconstruction step of the WENO schemes (see equation
(2.5) in [1]). After projecting the fluxes on the characteristic fields via the left eigenvectors, the high order
WENO reconstruction step is applied to obtain the high order approximation at the cell boundaries, which
are projected back into the physical space via the right eigenvectors. We refer to [1] for further details on
the algorithm.
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4 Particle-mesh Method

4.1 Particle solver

The Lagrangian tracking algorithm of the particles consists of three stages per particle, including searching
the element that a particle is located in, interpolating the field variables to the particle location, and pushing
the particle forward with a time integration method.

Locating the host cell of a particle is a trivial task on a structured grid. In [14, 17] a tracking algorithm
was discussed in a system that only couples the field equations to the particles in one direction, e.g., passive
advection. It was shown that interpolation and time integration may, in most cases, be of a lower order than
the approximation order of the spatial and time discretization of the field equations to accurately capture the
particle traces. Jacobs and Hesthaven [14], however, found that to avoid aliasing errors and an unphysical
numerical total energy increase, the order of interpolation has to equal the approximation order k of the
stencil Sk and the time integration of the particle solver and the carrier phase solver have to match.

We compare lower and higher-order interpolation in this paper. In the section below we discuss several
interpolation schemes, including an ENO interpolation that is ideally suited for interpolation of flow solutions
containing shock discontinuities. Throughout the paper, we take the scheme used for time-integration the
same for the particle and the Euler solver.

4.2 Coupling of WENO and particle solver

The particle and the carrier phase exchange momentum and energy. The carrier phase velocity and tem-
perature at the particle position determines the influence of the carrier phase on the particle. This velocity
and temperature is determined by interpolation of carrier flow values at the cell centers, i, surrounding the
particle position. The particle influence is distributed on the carrier phase by the weighing function K in
(11). The interpolation method and weighing function determine the accuracy and characteristics of the
Eulerian-Lagrangian frame coupling.

Low-order interpolations are well known to lead to aliasing errors and instability in particle-mesh
methods [10]. High-order interpolation and weighing reduces these inaccuracies [10, 20]. We therefore search
for the high-order interpolation and weighing that is consistent with the high-order WENO-Z method.

In what follows, we present the lower-order interpolation and weighing for reference, and then discuss
high-order central interpolation. Gibbs oscillations plague the accuracy of the central interpolation over
shocks. Here, we propose and test an ENO interpolation to improve interpolation in these areas. A high-
order spline interpolation [20] reduces aliasing errors and noise in the source determination in (11).

4.2.1 Interpolation

In smooth flow areas without shocks, a central interpolation to the particle position is the most accurate and
consistent with the finite difference WENO-Z scheme, and thus preferred. We use the Lagrange interpolating
polynomial of degree k,

Pk(xp) =

ip+k/2
∑

i=ip−k/2

Q(xi)li(xp), (23)

where ip represents the nearest cell center to the left of the particle position. The number of interpolating
points k equals the number of points used in the k-th order WENO scheme. In the case of the fifth order
WENO scheme, k = 5.

In shocked regions the centered interpolation will produce undesirable Gibbs oscillations. With an ENO
interpolation [18], these oscillations are essentially removed. In ENO interpolation, the interpolating points
are determined based on smoothness of the function measured by the divided differences. The k-th degree
divided differences are determined first.
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particle

(k=5)ENO stencil

k=2 stencil

shock

point

nearest grid

Figure 2: One dimensional ENO stencil for interpolation to a particle located near a shock. The interpolation
stencil is determined based on the divided differences at the particle’s nearest grid point to the left of the
particle.

The 0-th order divided differences of Q are defined by:

Q[xi] ≡ Q(xi). (24)

The j-th degree divided difference for j ≥1 are defined by

Q[xi, · · · , xi+j ] ≡
Q[xi+1, · · · , xi+j ] − Q[xi, · · · , xi+j−1]

xi+j − xi
. (25)

Starting from a two point stencil ,
{

xip
, xip+1

}

, the interpolation stencil is expanded to k points based on a
comparison of the divided differences of the increasing order at ip (See Fig. 2). The smallest second order di-
vided differences at ip of the two potential three point stencils min

{

Q[xip−1, xip
, xip+1], Q[xip

, xip+1, xip+2]
}

indicates the smoothest interpolation stencil and is therefore chosen. This procedure is repeated until a k
point interpolant is found. The Lagrange interpolant in (23) then interpolates the relevant gas properties to
the particle position.

In Fig. 2, we give an example of a typical ENO stencil close to a shock. We find the nearest grid point
to the left of the particle. The magnitude of the first order divided differences at this grid point are larger
than the divided differences to the left because of the shock jump. The stencil is therefore extended to the
left. The same holds for the divided difference of a higher order than one. So, the ENO stencil will be
preferential one-sided to the left of the particle if the particle is located in the cell including a shock.

In two dimensions, the same procedure can be used along the separate dimension on the tensor grid. The
divided differences are determined along horizontal and vertical lines in the grid. With the one dimensional
approach outlined above, we find the left most and bottom most grid point of the interpolation stencil with
k × k points for each grid point in the domain.

We give an example of a two dimensional ENO stencil in Fig. 3. The particle’s nearest grid point is
found to the left and bottom of the particle. The left and bottom point of the ENO stencil are determined by
comparison of the divided difference along the horizontal and vertical line crossing the nearest grid point. If
a particle is located in a cell with a shock, then the ENO is one-sided to the left and bottom of the particle.
We note that if two shocks cross the k interpolation stencil, then this procedure will fail to recognize the
second shock. We did not encounter stability problems in the simulations and a more sophisticated method
based on the high order multi-resolution analysis is under study.

4.2.2 Weighing

Low-order particle-methods [10] usually weigh with a zeroth or first order function for K(x, y) in (11) as
shown in Fig. 4.
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left point particle

shock

ENO stencil

bottom point

Figure 3: Two dimensional ENO stencil for interpolation to a particle located near to a shock. The left and
bottom point of the interpolation stencil is determined based on the divided differences along the horizontal
grid lines and the vertical grid lines at the particle’s nearest grid point to the left and bottom of the particle
position.
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Figure 4: The p-th order weighing function.
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The zeroth order weighing function is a tophat function,

K(x, 0) =
1

∆x
, 0 ≤ x ≤ 1

2
∆x, (26)

that weighs the particle influence to the nearest grid point. The first order weighing function,

K(x, 0) =
1

∆x

∆x − x

∆x
, (27)

typically used, can be interpreted as a local area weighing. The particle splits a cell into two subcells. The
area of the sub-cell to the left determines the particle influence to the grid point on the right of the particle
and vice versa. In two dimensions the quadrilateral cell is divided into four new subcells by the particle.
The subareas of these are weighted to opposite grid points.

The lower order weighing functions are inconsistent with the higher-order method. The lack of smooth-
ness of the particle shape results in Gibbs type phenomena that affect accuracy and introduce noise in the
source term, S. The non-smooth shape is also enhancing instability [10]. Many of these undesirable af-
fects can be reduced by weighing with the shape function described in [19] or weighing with a high order
interpolant.

Several options are in principle possible for a higher order weighing. Desirable properties of the weighing
function are:











1

A

∫

A

K = 1

max(K) at xp

M − 1 differentiable M > 1.

(28)

The first criterion states that the area (A) weighted average of K is equal to one and ensures that the
magnitude of individual particle momentum and energy is conserved. The second criterion ensures that the
particle influence is highest at the the particle location. The third ensures smoothness of the function up to
order M consistent with the M -th order stencil used for the WENO-Z method.

We consider the high-order spline interpolation discussed in [20], that have all three properties. The
spline Sk is constructed by the convolution of the square nearest-grid-point or zero order weighing function.
For large k the spline approaches the Gaussian function. The zeroth mode of the function in wave space is
free of aliasing errors, and the higher component of the function in wave space are smaller than equivalent
Lagrangian interpolations.

5 Numerical Experiments

We test and validate the WENO-Z based PSIC algorithm with one and two dimensional computations of
the particle-laden flow that evolves when a shock runs through a cloud of particles. We shall refer the third
order WENO-Z method with the second order central interpolation scheme as PSIC/WENO-Z-3 and the
fifth order WENO-Z method with the fifth order ENO interpolation scheme as PSIC/WENO-Z-5 or simply
PSIC/WENO-Z, unless specified otherwise.

To summarize the algorithm, we approximate the system of hyperbolic Euler equations (2) in the
Eulerian frame,

dQ

dt
= −∇ · ~F (Q) + S(~xp − ~x), (29)

on each grid point. A Np number of particles are individually traced in the Lagrangian frame with

d~xp

dt
= ~vp, (30)

d~vp

dt
= f1

(

~vf − ~vp

τp

)

− 1

ρp
∇P |f , (31)

dTp

dt
=

1

3

Nu

Pr

(

Tf − Tp

τp

)

. (32)
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Interpolation determines ~vf , and Tf , while weighing determines S(~xp − ~x).
The resulting system of ODE can be updated implicitly or explicitly. If the particle phase and continuum

phase have different time scales then an implicit-explicit method can increase the scheme’s efficiency [15].
In this study, time integration is performed without typical splitting used for many particle-mesh methods
e.g. leap-frog methods [10]. We employed the third order Total Variation Diminishing Runge-Kutta scheme
(RK-TVD) [2]:

~U1 = ~Un + ∆tL(~Un)

~U2 =
1

4

(

3~Un + ~U1 + ∆tL(~U1)
)

, (33)

~Un+1 =
1

3

(

~Un + 2~U2 + 2∆tL(~U2)
)

where L is the spatial operator as in the right side of (29) or the right hand side of (32). The CFL number
is set to 0.4.

The following numerical experiments were performed on a SUN workstation equipped with a AMD
Opteron(tm) 250 processor and 3GB of memory.

5.1 One dimensional shock interacting with a cloud of particles

We consider the one dimensional problem of a shock running into a cloud of particles, that was studied
extensively computationally and experimentally by Boiko et al. [12]. A shock tube problem is setup in the
domain x ∈ [−5, 6] with length, L = 11. The state of the pre-shock flow is

[ρR, uR, pR] = [1, 0, 1]. (34)

The post-shock state can be computed via the well-known Rankine-Hugoniot relations for a given Mach
number Ms. Here, we use Ms = 2.8 with the shock at xs = 0. A reflective boundary condition is imposed
on both ends of the shock tube.

A cloud of particles with a volume concentration of 3% is initialized in the interval [0, 0.2981]. The
particle response time and density are, τp = 3.9296 × 103 and ρp = 1200, respectively, corresponding to
the experiment with acrylic particles in [12]. We take the Reynolds number needed to compute the particle
traces according to the experiment at Ref = 1.7638× 106.

As a reference, we perform computations with the fifth-order WENO-Z method and particle interpola-
tion and weighing based on a two point stencil. In Fig. 5 we compare the pressure evolution for three grid
spacings, ∆x = L/N , N = 200, 400, 800 with the computations performed in [12] with a classical second or-
der PSIC method based on a third-order Rusanov method. It is noted that experiments of the particle-shock
flow in a shock tube in [12] compared well with the PSIC computations.

A left moving reflective shock is generated when the shock hits the cloud of particles shortly after time
t > 0. Moreover, an expansion fan is formed at the rear end of the cloud after the shock has passed the
cloud of particles. It is clear in Fig. 5 that the high order WENO-Z method gives a sharper representation
of the shock and improves the resolution of expansion fan as compared to the Rusanov based method.
We underscore the importance of a high order carrier flow solver in Fig. 6 by comparing PSIC based on
a third, fifth and seventh order WENO-Z method. The third order PSIC/WENO-Z-3 diffuses the shock
and the expansion fan much like the Rusanov based PSIC method, where the higher order PSIC/WENO-Z
increasingly sharpens the shock capturing and improves the resolution in the expansion fan.

To fully take advantage of the high-order features of the WENO method the PSIC method and coupling
have to be high-order. This requires a high-order interpolation of the carrier flow to the particle position. In
smooth regions of the flow, a high-order central interpolation scheme is most accurate, however, in shocked
regions Gibbs oscillations can be expected with a central interpolation scheme if the order of the interpolation
is greater than one. Figure 7 confirms the inaccurate solution with a central interpolation scheme. The
pressure solution oscillates to the left of the right running shock and to the right of the reflected shock. The
oscillations persist throughout the computed time interval.
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Figure 5: Pressure profile at times (a) t1 = 0.275, (b) t2 = 0.55, and (c) t3 = 0.825 for three grid spacing
∆x = 0.055, 0.275, 0.01375 as computed with the fifth order PSIC/WENO-Z-5 method, compared to the
third-order Rusanov based method by Boiko et al. [12].
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Figure 6: Pressure profile at times (a) t1 = 0.275, (b) t2 = 0.55, and (c) t3 = 0.825 for the third, fifth and
seven order PSIC/WENO-Z method.
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Figure 7: Pressure profile at times (a) t1 = 0.275, (b) t2 = 0.55, and (c) t3 = 0.825 for the fifth order
PSIC/WENO-Z-5 method with interpolation based on a two points, s = 2, three points, s=3, and five
points, s=5, interpolation stencil.
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With ENO interpolation these oscillations can be prevented (Fig. 8). The pressure trend to the left
of the right-running shock now matches well with the solution computed via the low-order interpolation
scheme.
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Figure 8: Pressure profile at times (a) t1 = 0.275, (b) t2 = 0.55, and (c) t3 = 0.825 for the fifth order
PSIC/WENO-Z-5 method with a two point interpolation stencil, s=2, and a five point ENO interpolation
stencil, s=5.

With increasing order of the weighing function, we observed a slightly smoother source term, S, that
can be expected to lead to reduced aliasing errors and noise in the coupling between the carrier phase and the
particle phase. No significant difference between the solutions of the second order and high order weighing
(not shown) were observed for this case. ,

5.2 Two dimensional shock interaction with a cloud of 40K bronze particle

In a more rigorous test, we study the shock-particle interaction in two dimensions. In Kiselev et al. [13], the
two dimensional computation was performed with a PSIC method based on a third order Rusanov scheme.
We use their setup to validate the high order WENO-based PSIC. We initialize a right running Mach three
shock Ms = 3 at xs = 0.175 in a rectangular domain [0, 3] × [−0.611, 0.611] (see the top figure in Fig. 10).
Inflow and outflow boundary conditions are specified, respectively, in the x direction. Periodic boundary
conditions are imposed in the y direction. A uniformly distributed bronze particle cloud is seeded in a
rectangular shape, [0.175, 0.352]× [−0.044, 0.044], with zero initial velocity. The volume concentration of the
particles in the cloud is 4%. The particle response time and density are, τp = 51.69 and ρp = 7.42 × 104,
respectively, corresponding to an experiment with the bronze particle cloud in [13]. We take the Reynolds
number needed to compute the particle traces according to the experiment at Ref = 3.387 × 107. In our
discussion of the results below, we shall refer to the collection of the particles as shape.

In the following simulations, the number of grid points used to solve the Euler equation in the Eulerian
frame is 1500 × 500 in the x and y directions respectively. The total number of particles is 40K. The CFL
number is 0.4.

In the two dimensional case, the PSIC/WENO-Z that uses a high order central interpolation scheme is
found to be more prone to instability. The Gibbs oscillations introduced by high order central interpolation
are not dissipated by the WENO-Z method in two dimensions, resulting in an unstable scheme. The essen-
tially non-oscillatory characteristic of ENO eliminate these numerical oscillations. The ENO computations
were stable and were in excellent agreement with published results and low order computations.

Using ENO interpolation scheme, however, comes at the price of evaluating the divided differences and
finding the appropriate smooth interpolating stencils for particles located within a cell. In our limited tests
with 40K particles, approximately 20% of the total CPU time in the particle interpolation stage is used to
locate the smooth interpolation stencils.
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In Fig. 9, a contour plot of the vorticity magnitude |ω| computed with the third order PSIC/WENO-Z
method using a second order central interpolation scheme (PSIC/WENO-Z-3) is compared to the vorticity
magnitude contour computed with the fifth order PSIC/WENO-Z method using high order ENO interpola-
tion scheme (PSIC/WENO-Z-5) at the top and bottom figures, respectively. The solution computed by the
third order method is far more dissipative than the fifth order scheme; The small vortical roll-up generated
by a small jet moving to the right at the symmetry axis (y = 0) is clearly under-developed in the third order
method. The small scales disturbances generated by the particle-wave interaction throughout the figure are
smoothed out as well in the third order method. The recirculation structures right behind the cloud are
stronger (higher vorticity) and richer (more detail) in the fifth order solution as compared to the third order
solution.

Figure 9: Contour of vorticity magnitude |ω| of the Mach 3 shock interaction with 40K bronze particles
as computed by (Top) the third order PSIC/WENO-Z-3 and (Bottom) the fifth order PSIC/WENO-Z-5
methods at time t = 0.225. The contour lines are between 5 and 305 with an increment of 10. The number
of grid points for the Euler equation in the Eulerian frame is 1500×500 in the x and y directions respectively.

In the following, we describe the flow evolution of the shock-particle cloud interaction using the fifth
order (PSIC/WENO-Z-5) method to illustrate the complexity of this flow, and the potential of these methods
to capture detailed multi-scale flow physics for long times.

In Figs. 10-11, we present snapshots of the density ρ (left column), the vorticity magnitude |ω| (middle
column) and the trajectory of the particles (right column) at non-dimensional times t = 0, 0.05, 0.1, 0.225,
0.5, 0.75. Fig. 12 shows the density, ρ, contours with the trajectory of the particles superimposed on it at
time t = 1 for x ∈ [0.05, 0.205]. The dotted rectangle in the figures shows the original shape and position of
the particles at t = 0 for reference.

In the time interval from t = 0 to t = 0.05, the right running Mach 3 shock hits the particle and a
reflected bow shock forms at the front end of the shape as seen in the density plot (Fig. 10, left column). The
right running shocks move along the top and bottom sides of the shape and are curved close to the shape.
Strong vorticity ω is generated by the accelerated flow in the wake of the curved shock. The shear layer
emanating from the front corners of the shape are also clearly visible by the increased vorticity magnitude in
Fig. 10 (middle column). The accelerated flow stagnates at the front of the shape and compresses the shape.
The particles at the front end move towards the right at this early time and increase the particle density
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(Fig. 10, right column).
At times t = 0.1 and t = 0.225, the main shock has moved past the shape and the two curved shocks

originated from the top and bottom of the shape have moved towards and crossed the symmetry line at
y = 0. A Mach reflection occurs once the curved shocks have crossed the symmetry lines, that connects the
curved shock and the right running main shock. Further in time, the flow complexity significantly increases,
when the non-linearly interacting curved shocks affect the compression wave in the particle cloud, and the
vorticity generated at the rear end of the cloud.

The force exerted by the particles on the accelerated gas behind the main shock leads to a flow pattern
comparable to a flow over a blunt body. The flow separated on the top and bottom sides of the shape, and
a recirculation forms at the back of the shape. The shape is compressed inward on the top and bottom sides
toward the symmetry line at y = 0 as shown in the trajectory of the particles. The strong vorticity in the
separated shear zones pulls the particles out of the shape, which leads to the formation of the particle arms
and legs on the side and the back of the shape. The arms and legs follow the separated shear layers. At the
back of the shape, the particle legs thus bend inward and the particle arm on the sides moves upward and
downstream.

The gas density increases inside the shape, but the pressure remains constant (not shown). The particles
cool the gas through heat exchange [13]. The lowered temperature leads to an increased density to satisfy
the ideal gas law (see Fig. 10), since the pressure remains constant in the cloud to balance the particle force.

The overall flow field maintains its symmetry up to this point in time.
The flow becomes unstable and loses its symmetry at later time (See figures for t = 0.5 and t = 0.75).

In the wake of the shape an asymmetric shedding is observed in the density and vorticity contour (Fig. 11,
left two columns). Increasingly more particles are dispersed upward and downstream of the cloud forming
long and thicker particle arms into the main flow and around the shape. A compression wave that formed at
the side of the shape at early time, has now moved sideways away from the symmetry line, and has run into
the particle arms. This compression wave reshocks the particle-laden flow in the arms, and further widens
the particle arms. This re-shocking induces intermittent wave patterns in the side shear layer that interact
with the particles forming streaks and bunching of the particles.

Throughout the computed time interval the side arms shield the high-speed flow generated by the right
running shock from the wake of the shape. Only a small number of particles are dispersed in the legs at the
rear of the shape, since the side arms divert the main high speed flow away from the shape and the relatively
low flow velocities in the wake of the shape do not carry the particles as much as in the side arm.

In Fig. 12 the density flow field with a superimposed particles trajectory at t = 1 shows the flow field in a
larger domain, and illustrate the tremendous complexity of this flow, with coupled multiple shock reflections,
and particle dispersion. A full length animation of the density field of the Mach 3 shock-particle-laden flow
is posted at [http://attila.sdsu.edu/ jacobs/PICTURES/Rho 40K.avi].

6 Conclusions and Future Developments

We have developed a high order particle-source-in-cell (PSIC/WENO-Z) algorithm based characteristic based
conservative finite difference WENO-Z method for computation of particle-laden flows with shocks.

A high order ENO interpolation ensures a stable high order interpolation of the carrier gas to the
particle position. In one dimension, the interpolation stencil is determined using divided differences. A
Lagrange interpolant then interpolates the carrier gas from the finite difference grid to the particle position.
In two dimensions, the divided differences along horizontal and vertical lines on the tensor grid determine
the interpolating stencil. A Lagrange interpolation again determines the carrier gas properties at the particle
location.

High order central interpolation was shown to be inaccurate and in two-dimensional cases unstable.
A high order weighing function, that reduces aliasing errors and noise, was implemented. A third order
RK-TVD scheme integrates both the particles and carrier gas phase in time.

We tested the algorithm in a one dimensional shock-particle-cloud interaction problem. We showed
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Density ρ Vorticity |ω| Particle’s Trajectory

Figure 10: A snapshot of the density ρ (left column), the vorticity magnitude |ω| (middle column) and the
trajectory of the particle clouds (right column) for time t = 0, 0.05, 0.1 , 0.225, 0.5 , 0.75 (from top to
bottom) as computed by the fifth order PSIC/WENO-Z-5 method with ENO interpolation scheme. The
dotted rectangle in the figures showed the original shape and position of the particle clouds at t = 0 for easy
reference. The shock Mach number is Ms = 3. The number of grid points used in the Eulerian frame is
1500× 500 in the x and y directions respectively. The total number of bronze particle clouds is 40K.
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Figure 11: see figure 10 for caption.

Figure 12: The density ρ contour and the superimposed trajectory of the particle clouds at time t = 1 as
computed by the fifth order PSIC/WENO-Z-5 method with ENO interpolation scheme. The domain size in
x is [0.05, 2.05]. See figure 10 for additional caption.
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that the high-order WENO based PSIC/WENO-Z method captures shock movement more accurately than
the third order Rusanov method, while the particle motion and the expansion region behind the shock
compared well to published results. Numerical induced oscillations were clearly visible when a central high
order particle interpolation was used. The central high order weighing slightly smoothened the solution, but
did not have a significant effect on the particle-laden flow.

A two dimensional test on a shock-particle-cloud interaction, confirmed the above findings. In two
dimensions, the high-order central interpolation is unstable. Long time integration illustrated that the
algorithm is capable of capturing shocks and fine scale flow features at the same time.

Our current efforts focus on a one sided weighing of the particles consistent with the ENO interpolation.
The central high order weighing we employed in this study diffuses the particle influence over the grid. Even
though this leads to favorable stability properties, the smearing at shock locations is likely to negatively
affect the accurate capturing of the shock capturing.

We are also working on a particle-source-in-cell method with a hybrid spectral-WENO kernel in a
multi-domain framework for solution of the gas dynamics. In the hybrid method [22], the WENO method
effectively captures shocks in shocked subdomains, while in smooth subdomains, a more efficient spectral
method solves the gas flow. A high order smoothness indicator based on the high order multi-resolution
analysis switches the WENO and spectral methods adaptively in space and time as the flow evolves in time
in each subdomain. A consistent high-order particle interpolation and weighing in the hybrid is currently
under development.

We illustrated the potential of this method to identify detailed flow physics that are found in high-speeds
flow environments. In future work, we will extend the capabilities of the algorithm to include viscous flow
models, large-eddy modeling, chemical reactions, and extension and parallel implementation of the algorithm
to three dimension in complex geometry, enabling the analysis of high-speed combustors.
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