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We present the results of a combined experimental and numerical study of flow sepa-

ration in the unsteady, two-dimensional, rotor-oscillator flow. Experimentally-detected

material spikes are directly compared to separation profiles predicted from numerical

shear-stress and pressure data, using a recent kinematic theory of unsteady separation.

For steady, periodic, quasi-periodic and random forcing, fixed separation is observed,

and experimental observations and theoretical predictions are in close agreement. The

transition from fixed to moving separation is also reported.

1. Introduction

Prandtl (1904) initiated the idea that in steady two-dimensional flow, laminar boundary-

layer separation occurs at a point of zero skin-friction and negative skin-friction gradient
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on a no-slip boundary. He stated that at this point “a fluid-sheet projects itself into the

free flow and effects a complete alteration of the motion.” If the x-axis is tangent and

the y-axis normal to the boundary (cf. figure 1), then Prandtl’s steady theory predicts

boundary-layer separation at the (x, y) point p = (γ, 0) satisfying:

τ(γ) = 0, τx(γ) < 0, (1.1)

where τ(x) = µuy(x, 0) is the skin-friction, (u (x, y) , v (x, y)) the two-dimensional velocity

field, and µ the dynamic viscosity.

More generally, the criterion (1.1) applies to flow separation of any scale, i.e., in any

situation where a fluid-sheet projects itself into an incompressible and steady mean flow.

Examples other than boundary-layer separation include: separating streamlines in Stokes

flows, such as Moffatt corner-eddies (Moffatt, 1964) and the rotor-oscillator flow (Hack-

born, Ulucakli & Yuster, 1997); and small-scale separation structures within a boundary

layer, such as a separation bubble (Horton, 1968). In all these cases, fluid particles

separating away from the boundary form a material spike with some spatial scale. The

separating streamline (which is the backbone of the material spike) makes an angle α with

the wall that can be determined from the skin-friction gradient, τx, and wall-pressure

gradient, px, (Lighthill, 1963) using

α = tan−1

(−3τx(γ)
px(γ, 0)

)
. (1.2)

For unsteady flows, different definitions of separation can be given (Haller, 2004). We

follow the lead of Prandtl (1904) and use the term ‘separation’ to mean the sudden

ejection of fluid particles from a rigid boundary in the form of a sharp material spike.

While in steady flows a material spike has a clear signature in the skin-friction field,

in unsteady flows a material spike does not necessarily have a clear connection with

instantaneous Eulerian quantities. As theoretical, numerical and laboratory experiments
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Figure 1. A time-dependent unstable manifold M(t) originating from the fixed separation

point p = (γ, 0) making angle α(t) with a no-slip boundary.

reveal, instantaneously-vanishing skin-friction and accompanying flow reversal do not, in

general, denote separation in any meaningful sense in unsteady flow (Sears & Telionis,

1975), a fact further emphasized by the results of the present study.

Establishing a practical and widely accepted criterion for detecting unsteady separa-

tion in experimental fluid flows has proven challenging. Two recent approaches have

been the Moore-Rott-Sears (MRS) principle (Sears & Telionis, 1975) and a Lagrangian

formulation of material-spike formation in boundary-layer equations by Van Dommelen

& Shen (1982); for more details see Haller (2004). Among other practical shortcomings,

however, the MRS principle still features instantaneous Eulerian quantities, whereas the

approach of Van Dommelen is inapplicable to physical, two-dimensional Navier-Stokes

flows, which do not exhibit singularities at flow separation (Liu & Wan, 1985). Thus,

while these two approaches have been highly influential, neither has proven applicable in

practical situations.

For near-steady, time-periodic incompressible flows, Shariff, Pilliam & Ottino (1991)

and Yuster & Hackborn (1997) showed mathematically and numerically that vanishing,

time-averaged skin-friction is a rigorous criterion for material-spike formation on a no-

slip boundary. Building on this, Haller (2004) and Kilic, Haller & Neishtadt (2005)

developed a general kinematic theory of unsteady separation for two-dimensional flows
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with arbitrary time dependence. The theory states that in any mass-conserving flow,

a fixed, wall-based material spike forms where the weighted time-averages of the skin-

friction and its gradient are zero and negative, respectively. In the incompressible case,

the theory agrees with (1.1) for steady flows, and with the results of Shariff, Pilliam &

Ottino (1991) and Yuster & Hackborn (1997) for near-steady time-periodic flows.

Here, we present a combined experimental and numerical investigation of the two-

dimensional kinematic theory of separation. The system we investigate is the unsteady,

rotor-oscillator flow (Hackborn, Ulucakli & Yuster, 1997). To the best of our knowledge,

this is the simplest experimental arrangement in which one can generate and manipulate

unsteady separation under a diverse set of flow conditions. In section 2, we summarize the

underlying kinematic theory, before describing our experimental and numerical methods

in section 3. We present results for several pertinent unsteady flows in section 4, before

drawing our conclusions in section 5.

2. The kinematic theory of fixed separation

The kinematic theory of fixed separation seeks to identify the location and shape of

wall-based material spikes from on-wall measurements of flow quantities. In nonlinear

dynamical systems theory, the material spikes are signatures of unstable manifolds, i.e.,

distinguished, time-dependent material lines that shrink to a single boundary point, the

separation point, in backward time (figure 1). In forward time, these unstable manifolds

collect and eject particles from the vicinity of the wall, thereby creating the familiar

material spikes observed at separation points in experimental flow visualizations.

If the flow is unsteady, one might expect material spikes to have time-varying locations.

For flows with a well-defined steady mean, however, the separation point is shown to be

fixed (Haller, 2004; Kilic, Haller & Neishtadt, 2005), even though the separation spike
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deforms in time. If, in addition, the flow is incompressible, then at time t0 all fixed

separation points p = (γ, 0) satisfy

lim
T→+∞

1
T

∫ t0

t0−T

τ(γ, t) dt = 0, lim
T→+∞

1
T

∫ t0

t0−T

τx(γ, t) dt < 0. (2.1)

That is to say, fixed separation occurs at locations where the backward-time average of

the skin-friction is zero and the time average of the skin-friction gradient is negative. The

first condition in (2.1) is also satisfied at attachment points, i.e., at points that behave

like separation points in backward time. The second condition distinguishes p from an

attachment point and excludes flows at rest, ensuring fluid-particle ejection. For steady

incompressible flows, (2.1) simplifies to the original Prandtl criterion (1.1).

The time-dependent orientation of the unstable manifold that defines the material spike

can also be calculated from distributed skin-friction and wall-pressure measurements.

Specifically, the separation angle α at time t0 satisfies

tan α(t0) =
limT→−∞−3 1

T

∫ T

t0

τx(γ, t) dt

limT→−∞ 1
T

∫ T

t0

[
px(γ, 0, t) + 3τx(γ, t)

∫ t

t0

(1/µ)τ(γ, t)ds

]
dt

. (2.2)

In the limit of a steady flow, this formula reduces to (1.2). The criteria (2.1) and (2.2)

can be generalized to any compressible fluid flow that is locally mass-conserving at the

point of separation (Haller, 2004), including three-dimensional flows (Surana et al, 2007).

Additional relations also exist for calculating higher derivatives of the separation profile.

3. Methods

3.1. Experimental apparatus

The experimental arrangement utilized was the rotor-oscillator configuration (Hackborn,

Ulucakli & Yuster, 1997). The experiment, sketched in figure 2, comprised an acrylic tank

40.2 cm long, 8.8 cm wide and 12.0 cm deep. The tank stood in an aluminum support
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Figure 2. Schematic of the experimental apparatus.

frame with leveling mounts and had an open top. An acrylic cylinder of diameter 6.39

mm was held vertically in the tank, at a distance of 26.20 mm from the center of the

cylinder to the 40.2 cm front wall. The cylinder extended to within 1.0 cm of the bottom

of the tank and was mounted to a stepper motor that provided rotation. The alignment

of the cylinder was true to the axis of rotation to within 0.13 mm. The stepper motor

was, in turn, mounted on a computer-controlled horizontal translation stage, aligned

parallel to the front wall so that the cylinder could be moved side-to-side in the tank.

Fluid motion was thus driven by a combination of cylinder rotation and translation.

A tri-layer fluid arrangement was used, comprising a 2.8 cm-thick bottom layer of

FC-40 Fluorinert electronic coolant, a 5.0 cm-thick center layer of glycerol (in which the

visualization took place), and a 1 cm-thick top layer of vegetable oil. The bottom layer

of FC-40 suppressed three-dimensional effects caused by interaction between the cylinder

and the bottom wall. FC-40 was chosen due to its high density, 1900 kg/m3, and low

viscosity, 2 × 10−6 m2/s, relative to the working fluid, glycerol, which has a density of

1262 kg/m3 and a kinematic viscosity of 9 × 10−4 m2/s. The top layer of vegetable oil
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isolated the hydrophilic glycerol from air, where it otherwise readily absorbed moisture,

resulting in convection.

Separation was visualized using streaklines created by the laser-induced fluorescence

of a neutrally-buoyant dye, mechanically injected through four injection ports in the

sidewall boundary at the mid-depth of the tank (see figure 2). The injection ports had

an exit diameter of 0.56 mm, and dye was supplied by a syringe pump at a rate of 1

ml/hour. The dye was a mixture of glycerol and fluorescein, for which the concentration

of fluorescein was extremely small so as not to noticeably affect the density. Motion of

the dye was within a two-dimensional plane at the mid-depth of the tank, to the extent

that over the course of an experiment (∼10 mins) there was no detectable vertical motion

of the dyed fluid. In each experiment, the arrangement was configured so that dye was

injected at points several millimeters away from the separation location, so as not to

affect the flow in the region of separation.

The evolution of the dyed-fluid in the horizontal plane was recorded using a CCD

camera via a 45◦ front-faced mirror placed beneath the tank. The region of fluid near

the wall was illuminated with a 490 nm-wavelength laser-light column to excite the

fluorescein molecules. The camera lens was fitted with a 532 nm band-pass filter which

allowed only the light emitted by the excited fluorescent molecules to be recorded by

the CCD camera. To account for parallax, the camera was calibrated by imaging a

ruler placed in the horizontal plane of dye-injection prior to the start of the experiment.

Image acquisition was triggered by the rotor-oscillator motion-control system, allowing

each image to be matched precisely with a time step of the numerical simulation.

3.2. Numerical Simulations

The flow field was computed using FLUENT’s incompressible solver with a dynamic

mesh. In the computations, the cylinder was used as the point of reference rather than
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the tank walls, resulting in the tank walls oscillating while the rotating cylinder is fixed.

This allows a fixed, boundary-fitted mesh around the cylinder, while an orthogonal,

dynamic mesh is placed near the straight-sided tank wall. The orthogonal dynamic mesh

facilitates an easy and accurate computational implementation, and is computationally

more efficient than the tank reference frame. In the cylinder reference frame, a time-

dependent forcing term appears in the Navier-Stokes equations (Fumagalli, 2002). A

convergence study was performed to establish a grid-independent solution for a grid with

sixty-eight thousand grid points. To further validate the computation, the numerical

and experimental streaklines were directly compared. Skin-friction and pressure gradient

profiles were extracted from the numerical flow field. The predictions for the separation

location and the angle of separation were subsequently calculated from these numerical

quantities, and compared with experimental visualizations.

4. Results

4.1. Steady Forcing

Steady flow separation was investigated first to validate experiment, simulation and the-

ory. The cylinder rotation rate was set at 20.89 rad/s (199.5 RPM), with no side-to-side

cylinder oscillation, resulting in steady flow. The Reynolds number, based on the cylin-

der diameter, circumferential velocity of the cylinder, and kinematic viscosity of the

glycerol, was 0.47. Figure 3(a) shows the separation spike visualized using experimental

streaklines (fluorescent green dye). Superimposed on this image are numerical stream-

lines (which are the same as streaklines in a steady flow) generated from the velocity field

of the numerical simulation. The numerical streamlines closely follow the experimental

streaklines, from the vicinity of the boundary all the way into the body of the fluid. Also

superimposed is the predicted separation profile determined using (2.1) and (2.2).
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Figure 3. (a) The separating material spike in steady flow. (b) Zoom-in of the material

spike in (a). Superimposed on the images are numerical streamlines (white dashed lines), the

experimental separation location (red circle), and the predicted separation profile (yellow line)

originating from the predicted separation location (yellow circle).

The experimental point of separation was determined in this, and later, studies by

observing the location of the dye-free region within the separation spike, near the wall.

This region, which can be more clearly seen in figure 3(b), contains the marginally-stable

fixed point to which fluid particles are drawn, before being ejected away from the wall.

The location of the separation point was defined by tracing the trajectory of the dye-free

region at the center of the spike back to the wall. The experimental error was defined

to be the width of the dye-free region 0.5 mm away from the wall. The location of

the numerical zero-skin-friction point matches the experimentally-determined separation

point to better than 0.5 mm. The linear prediction of the separation angle also captures

the near-wall geometry of the separation spike by lining up with the dye-free region within
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Figure 4. (a) Comparison of the experimental and numerical separation location, γ, for periodic

forcing. (b) Mean skin-friction profiles for 0 mm, 24 mm, and 40 mm peak-to-peak amplitude

oscillations. Where the profiles cross the dashed line identifies points of zero mean skin-friction.

the spike. Far from the wall, the linear approximation deviates from the experimental

spike, which is to be expected given the wall-based approach.

4.2. Periodic Forcing

Periodic, unsteady flows were generated by combining cylinder rotation at 20.89 rad/s

with side-to-side sinusoidal oscillation. The period of oscillation was six seconds. Five

peak-to-peak displacements were investigated, ranging from 8 mm to 40 mm in 8 mm

incremental steps. In all experiments, the separation location remained fixed over the

entire period of oscillation, while the angle of the separation profile with respect to the

wall oscillated. The persistence of a fixed separation location was particularly dramatic

for the largest amplitude oscillations, for which the cylinder moved up to four times the

width of the domain shown in figure 3(b). The periodicity of the flow was verified by

identifying that the material spike was precisely repeated at the same phase over many

cycles of oscillation.

The experimental separation location and orientation could again be determined by
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observing a dye-free region at the heart of the material spike. For the different amplitudes

of oscillation, the experimental location was compared with the numerical prediction

calculated using (2.1). The results, including the steady case, are shown in figure 4(a).

For each case, the location of the time-average zero-skin-friction point closely matches

the experimental separation location. The error bars have a bias since the dye-free region

is asymmetric; the fluid velocity to the left of the separation location is much larger than

the fluid velocity to the right, driving fluid particles closer to the separation point before

they are ejected away from the wall.

The results in figure 4 show that the amplitude of oscillation had a significant effect

on the separation location relative to the mean rotor location, x = 0. The velocity field

induced by both cylinder rotation and oscillation changes dramatically over the period

of an oscillation and with increasing amplitude of oscillation; so too, therefore, does the

instantaneous skin-friction profile. This, in turn, leads to very different time-average

skin-friction profiles for the different amplitudes of oscillation, as shown in Figure 4(b),

for which the location of zero-crossing increases with increasing amplitude of oscillation.

The kinematic approach performed very well in determining the angle of separation. As

an example, in figure 5 we compare the material spike orientation with the predictions of

(2.2) for a 24 mm oscillation amplitude. The results for this intermediate case are shown

at three instances: (a) the minimum separation angle (∼ 60◦), occurring 2.0 s into the

6.0 s period oscillation, (b) an intermediate separation angle (∼ 71◦), occurring after 3.7

s, and (c) the maximum separation angle (∼ 80◦), occurring after 5.0 s. In all cases,

the theoretical time-dependent linear profile predicted using (2.1) and (2.2) leaves the

wall at the same angle as does the experimental dye-free region. When the curvature of

the experimental spike is small (figures 5(b) and (c)), which was typical for the smaller

amplitudes of oscillation we investigated, the linear profile follows the separation spike



12 Weldon, Peacock, Jacobs, Helu & Haller

(a) (b) (c)

Figure 5. Separating material spike in periodic flow (24 mm peak-to-peak oscillation amplitude)

compared with the numerical prediction (dashed line) for: (a) minimum separation angle (t=2.0

s); (b) intermediate separation angle (t=3.7 s); (c) maximum angle (t=5.0 s). (∗) or (←)

indicates the location of the instantaneous zero skin-friction point.

well into the fluid. When there is significant curvature of the spike (figure 5(c)), which

was characteristic of the larger amplitudes of oscillation we investigated, the experimental

spike and the linear prediction diverge within a few mm of the wall.

Finally, an important point to raise is the location of the instantaneous zero-skin-

friction point during these experiments. Its location for the 24 mm oscillations is indi-

cated in figure 5 using (∗) for the exact location or (←) to point to it, if it falls outside

the field of view, which is often the case. It is thus clear that the location of the instan-

taneous zero-skin-friction point does not provide a reliable indicator of the location of

separation for these experiments.

4.3. Quasi-Periodic and Random Forcing

Quasi-periodic forcing was applied by rotating the cylinder at 20.89 rad/s, while trans-

lating it laterally with a complex quasi-periodic motion, designed to emulate random

forcing. Each signal had a zero mean, and comprised twenty incommensurate frequen-
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Figure 6. (a) 5.97 mm RMS amplitude quasi-periodic rotor location (main plot line) and

convergence of the fixed separation location, γ (inset); (b) the fixed separation location, γ, as a

function of the RMS amplitude of oscillation for quasi-periodic forcing.

(a) (b) (c)

Figure 7. Separation spike in 5.97 mm RMS quasi-periodic flow compared with the numerical

prediction for: (a) an intermediate angle (t=52.3 s); (b) a large angle (t=73.0 s); (c) a small

angle (t=79.0 s). (∗) or (→) indicates the location of the instantaneous zero-skin-friction point.

cies with random phase and a common amplitude. One example of a signal used, having

a 5.97 mm RMS amplitude, is presented in the lower part of figure 6(a).

A fixed experimental separation point was observed for all the quasi-periodic cases

studied, and its location matched numerical predictions to within 1 mm for oscillations
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of RMS amplitudes up to 12 mm (peak-to-peak amplitudes of over 80 mm), as shown in

figure 6(b). Again, the persistence of a fixed separation spike under such dramatically

varying flow conditions was striking. It is noted, however, that (2.1) and (2.2) formally

require a time-history approaching −∞ to converge to a fixed separation point for general

unsteady flows; in practice, one therefore needs a sufficiently long time-history to obtain

reasonable convergence. In the upper part of figure 6(a), the convergence of (2.1) is

plotted for the forcing shown in the lower part of the same figure. Near convergence

(within several mm) was achieved within 20 s, but an additional 50 s was required to

converge to within 1 mm. This error is of similar magnitude to the discrepancy between

the experiment and numerical separation location in figure 6(b). We also found that

the prediction was sensitive to anomalously large changes in cylinder position in the

quasi-periodic signal, which could take many tens of seconds to average out.

The prediction of the experimental separation angle converged much faster than the

position, as the criterion (2.2) is more heavily biased to recent events. In figure 7, the

numerical predictions are compared with experimental visualizations for the 5.97 mm

RMS signal. The separation location and angle are visualized at three instances: (a)

an intermediate angle (66◦) at time t = 52.3 s, (b) a large angle (74◦) at time t = 73.0

s, and (c) a small angle (50◦) at time t = 79.0 s. As with the periodic case, the angle

is generally very well predicted; although, when the curvature of the spike is large, the

linear profile captures the separation geometry within only the first few mm of the wall.

Finally, experiments were performed in which motion of the cylinder was indeed ran-

dom with a zero mean amplitude. The system was studied for RMS oscillation ampli-

tudes up to 10 mm (peak-to-peak over 60 mm), constrained only by the capability of

the translation stage. The resulting cylinder motion was qualitatively very similar to

that presented in figure 6(a). We saw no qualitative difference in the system behavior
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for this scenario; the material spike still originated from a fixed location, despite the

strongly-varying external flow field, and appeared just as in figure 7. We do not have

direct comparison between experiments and numerics in this regime, however, because

of technical challenges in specifying random forcing in FLUENT.

5. Discussion & Conclusions

We have performed a combined experimental and numerical study of the kinematics

of a separating material spike in the unsteady, rotor-oscillator flow. Under a wide va-

riety of flow conditions fixed separation was observed, the location and orientation of

which was accurately predicted using a recently-developed, kinematic theory of unsteady

separation. These results further emphasize that knowing the instantaneous value of

Eulerian quantities, such as skin-friction and surface-pressure, is generally insufficient

for identifying the location of a separating material spike. Rather, one must record and

appropriately average a time-history of such quantities.

While this study investigated some exciting new ideas, much remains to be understood.

There are interesting cases for which the observed separation location is different from

those predicted by criteria (2.1) and (2.2). One example is very slow side-to-side motion

of the cylinder, which approaches a quasi-steady state. For periodic forcing, we found

that as the oscillation frequency was reduced the location of the material spike started

to oscillate until, at very low frequencies, the material spike followed the cylinder motion

precisely. While, in principle, the base of the separating material spike was still attached

to the wall at a fixed point (Haller, 2004), in practice this region was so indistinguishably

small it could not be resolved; instead, the body of the material spike appeared to follow

the motion of the instantaneous zero-skin-friction point.

We investigated another scenario in which the amplitude of oscillation was significantly
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increased. In this case the material spike was dragged side-to-side and no longer retained

a nicely-formed shape. Instead, it became quite deformed, and it was practically difficult

to identify a separation location. We note that if the oscillations were made arbitrarily

large, then the cylinder would spend so little time at any given location we would not

expect to see a material spike on a length scale that could be experimentally detected;

although one may exist on a much smaller, undetectable scale.

The next challenge is to extend the kinematic separation approach to unsteady flows

with arbitrary time-dependence, and be able to recognize the creation and/or breakdown

of moving material spikes using surface data. Criteria must be developed that balance

the time required for a fluid element to be ejected a certain distance from the boundary

with the characteristic unsteady time-scale of the flow. Such results have recently been

obtained by Surana & Haller (2007) for two-dimensional flows with an unsteady mean

component whose variation is slower than those of the oscillations imposed on the mean.

Further generalization and extension of these results is a challenging problem indeed,

but the inherent difficulty of such a task should not detract from the significant progress

in the current study. Primarily, we have rigorously and successfully tested a new criterion

for detecting fixed separation in unsteady flows; and, perhaps most remarkably, we have

demonstrated that fixed separation can occur even in a random experimental flow field,

which is kinematically equivalent to the conditions within a turbulent boundary layer.
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