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A refined beam model for the linear static aeroelastic analysis of generally oriented lift-
ing systems is described in this paper. It is aimed at beam-like structures such as classical
and unconventional wing configurations. The structural formulation of refined beam finite
elements is embedded in the framework of Carrera Unified Formulation. Increasing accu-
racy in predicting effects of warping, in-plane deformation is obtained by considering as a
free parameter the order of the displacement field expansion over the cross-section. Linear
steady aerodynamic loads are described via the Vortex Lattice Method and the transfer
to their energetically equivalent structural loads is performed by the Principle of Virtual
Displacements. Thanks to the accuracy of refined elements, the coupling of structural and
aerodynamic fields is performed via the Infinite Plate Spline method. The procedure in-
volves a set of pseudo-structural points placed on the reference surface of the wing system.
Different beam elements as well as different higher-order models are considered for the
analysis of various cross-section geometries and loading cases. The structural results are
validated with benchmarks retrieved from the classical models and NASTRAN. Aeroelastic
results show well correspondence with NASTRAN results for a number of wing configu-
rations. The proposed higher-order model proves its increasing accuracy in predicting
aeroelastic responses with respect to analyses based on classical beam theories.

I. Introduction

IN recent years a push towards the design optimization, aerodynamic and structural understanding of un-
conventional wing configurations such as Joined Wings and C-Wings has occurred. Although they have

been examined thoroughly for almost the last 30 years,1−3 their aeroelastic behavior and effect on design
are still not completely comprehended.4

Such a kind of wing systems finds applications extending from civil transport to military field. For
instance, the development of Unmanned Aerial Vehicles (UAVs) has led to the birth of the “sensorcraft”.
Sensorcraft is a joined wing aircraft designed for long-range, high-altitude intelligence, surveillance and re-
connaissance. Whereas, as far as the box plane is concerned, a study based on PrandtlPlane concept for
a 250-300 seat civil transport aircraft was completed for Airbus Deutschland in 2007. Then a static model
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of PrandtlPlane designed for Bauhaus Luftfahrt was presented during the Berlin Air Show in May 2008.
Again, aeroelastic investigations of geometrically nonlinear lifting surfaces in the past few years covered
high-aspect ratio wings of High-Altitude Long-Endurance aircraft5,6 (HALE), strut-braced wings,7,8 truss-
braced wings,9 wind tunnel models of delta, beam-like wings and C-Wing configurations.10

Practically, beam-like structures can be analyzed by means of beam theories. Hodges11 developed a
relevant example of geometrically exact structural beam model for the dynamics of beam-like structures.
However, higher-order beam elements are required in engineering fields such as aeroelasticity where the
proper analysis of torsional and bending vibration modes is fundamental to predict aeroelastic responses as
well as critical phenomena. Refined theories are necessary to cope with unconventional cross-section geome-
tries, short beams, orthotropic materials and non-homogenous sections.

A review of several beam and plate theories for vibration, wave propagations, buckling and post-buckling
was presented by Kapania and Raciti.12,13 Particular attention was given to models that account for trans-
verse shear-deformation. Moreover, a review about the developments in finite element formulations for thin
and thick laminated beams was provided. Kim and White14 investigated non-classical effects in composite
box beam models, such as torsional warping and transverse shear effects. Third-order, locking free beam ele-
ment was developed by Reddy,15 where Euler-Bernoulli’s and Timoshenko’s models were obtained as special
cases of the proposed element. Lee16 studied the flexural-torsional behavior of I-shaped composite beams.
Transverse shear deformation, coupling and warping effects were accounted for.

Refined theories are also developed by exploiting the asymptotic method. A suitable kinematics model
for a structural problem is obtained by investigating the role played by the various variables in terms of
a perturbation parameter (usually a geometrical one such as the span-to-height ratio for beams). The 3D
problem is then reduced to a 1D model by utilizing an asymptotic series of a characteristic parameter and
retaining those terms which exhibit the same order of magnitude when the perturbation parameter vanishes.
Relevant contributions in developing higher-order beam theories via asymptotic methods are represented by
VABS.17−19

In this paper the aeroelastic and structural formulations of refined beam finite elements are addressed.
The proposed structural formulation is embedded in the framework of Carrera Unified Formulation (CUF).29

CUF offers a systematic procedure to obtain refined structural models by considering the order of the theory
as a free parameter of the formulation. Different beam elements (with 2, 3 and 4 nodes) as well as different
higher-order models for the cross-section displacements field are used. Euler-Bernoulli’s and Timoshenko’s
beam models are obtained as particular cases of the first-order formulation. The beam cross-section has
been considered rectangular or square and the material is isotropic. The structural results are validated
with benchmarks retrieved from the classical models and NASTRAN. The proposed aeroelastic formulation
is based on the work of Demasi and Livne.10,32 The aeroelastic assessment consists in the comparison of
results with NASTRAN for several straight and swept wings.

II. Preliminaries

A beam is a structure whose axial extension l is predominant respect to any other dimension orthogonal to
it. By intersecting the beam with a plane perpendicular to its axis the beam’s cross-section Ω is identified, as
shown in Fig. 1. The Cartesian coordinate system is composed of x and z axes parallel to the cross-section
plane, whereas the y direction outreaches along the beam axis and is bounded so that 0 ≤ y ≤ l. In general,
the origin O can lie outside the contour of the cross-section, which is considered to be constant along the
beam axis identified by the y coordinate. The notation for the displacement vector is:

u
(
x, y, z

)
=

{
ux uy uz

}T

(1)

The stress and strain vectors are split into the terms on the cross-section:

σn =
{

σzy σxy σyy

}T

εn =
{

εzy εxy εyy

}T

(2)

and the terms lying on planes orthogonal to the cross-section:

σp =
{

σzz σxx σzx

}T

εp =
{

εzz εxx εzx

}T

(3)
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Origin within the cross-section Origin outside the cross-section

Figure 1. Beam’s cross-section geometry and coordinate system.

In the case of small displacement with respect to a characteristic dimension of the cross-section Ω, the
following linear relations between strain and displacement components hold:

εn =
{

uz,y + uy,z ux,y + uy,x uy,y

}T

εp =
{

uz,z ux,x uz,x + ux,z

}T

(4)

The subscripts x, y and z preceded by comma represent the derivatives with respect to the spatial coordinates.
A compact vectorial notation can be adopted:

εn = Dnp u + Dny u

εp = Dp u
(5)

where Dnp, Dny, and Dp are differential matrix operators:

Dnp =




0
∂

∂z
0

0
∂

∂x
0

0 0 0




, Dny =




0 0
∂

∂y

∂

∂y
0 0

0
∂

∂y
0




, Dp =




0 0
∂

∂z

∂

∂x
0 0

∂

∂z
0

∂

∂x




(6)

In the case of beams made of linear elastic orthotropic materials, the generalized Hooke’s law holds:

σ = C ε (7)

According to Eqs. 2 and 3, the previous expression becomes:

σp = C̃pp εp + C̃pn εn

σn = C̃np εp + C̃nn εn

(8)

where matrices C̃pp, C̃pn, C̃np and C̃nn are:

C̃pp =




C̃11 C̃12 C̃16

C̃12 C̃22 C̃26

C̃16 C̃26 C̃66


 , C̃pn = C̃

T

np =




0 0 C̃13

0 0 C̃23

0 0 C̃36


 , C̃nn =




C̃55 C̃45 0
C̃45 C̃44 0
0 0 C̃33


 (9)

For the sake of brevity, the dependence of the coefficients C̃ij on Young’s moduli, Poisson’s ratios, shear
moduli and the fibre angle is not reported here. It can be found in Reddy21 or Jones.22

III. Refined Beam Theory

According to the framework of Carrera Unified Formulation20 (CUF), the displacement field is assumed as
an expansion of a certain class of functions Fτ , which depends on the cross-section coordinates x and z:

u (x, y, z) = Fτ (x, z) uτ (y) τ = 1, 2, . . . , Nu = Nu (N) (10)
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The compact expression is based on the Einstein’s notation: repeated subscript τ indicates summation.
The number of expansion terms Nu depends on the expansion order N , which is a free parameter of the
formulation and at maximum equal to 4 in the present work. Mac Laurin’s polynomials are chosen as cross-
section functions Fτ and are listed in Table 1.

N Nu Fτ

0 1 F1 = 1
1 3 F2 = x F3 = z

2 6 F4 = x2 F5 = xz F6 = z2

3 10 F7 = x3 F8 = x2z F9 = xz2 F10 = z3

...
...

...

N (N+1)(N+2)
2 F (N2+N+2)

2
= xN F (N2+N+4)

2
= xN−1z . . . FN(N+3)

2
= xzN−1 F (N+1)(N+2)

2
= zN

Table 1. Number of expansion terms and Mac Laurin’s polynomials as function of N .

Most displacement-based theories can be formulated on the basis of the above generic kinematic field. For
instance, when N = 3, the third-order axiomatic displacement field is given by:

ux = ux1 + ux2 x + ux3 z + ux4 x2 + ux5 xz + ux6 z2 + ux7 x3 + ux8 x2z + ux9 xz2 + ux10 z3

uy = uy1 + uy2 x + uy3 z + uy4 x2 + uy5 xz + uy6 z2 + uy7 x3 + uy8 x2z + uy9 xz2 + uy10 z3

uz = uz1 + uz2 x + uz3 z + uz4 x2 + uz5 xz + uz6 z2 + uz7 x3 + uz8 x2z + uz9 xz2 + uz10 z3

(11)

Then the classical beam models, such as Timoshenko23 (TBM) and Euler-Bernoulli (EBBM), are derived in
ease from the first-order approximation model:

ux = ux1 + ux2 x + ux3 z

uy = uy1 + uy2 x + uy3 z

uz = uz1 + uz2 x + uz3 z

(12)

Timoshenko’s beam model (TBM) can be obtained by modifying the cross-section functions Fτ ; in particular
the terms {uij : i = x, z ; j = 2, 3 } are set equal to zero. In addiction, for EBBM an infinite rigidity in
the transverse shear is also adopted by penalizating εxy and εyz.

Higher-order models provide an accurate description of the shear mechanics, the cross-section deforma-
tions, the coupling of the spatial directions due to Poisson’s effect and the torsional mechanics more in detail
than classical models do. The EBBM neglects them all, since it was formulated to describe the bending
mechanics. The TBM accounts for constant shear stress and strain components. Classical theories and
first-order models require the assumption of opportunely reduced material stiffness coefficients C̃ij to correct
the Poisson’s locking effect.24−26

IV. Finite Element Formulation

Following standard FEM, the unknown variables in the element domain are expressed in terms of their values
corresponding to the element nodes.27,28 By introducing the shape functions Ni and the nodal displacement
vector q, the displacement field becomes:

u (x, y, z) = Fτ (x, z) Ni (y) qτi i = 1, 2, . . . , NN (13)

where:
qτi =

{
quxτi

quyτi
quyτi

}T

(14)

contains the degrees of freedom of the τ -th expansion term corresponding to the i-th element node. Elements
with number of nodes NN equal to 2, 3 and 4 are formulated and addressed as B2, B3, B4 respectively.29,30
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For the sake of brevity, their shape functions are not reported here, since they can be found in Bathe.31 The
stiffness matrix of finite element and the external loads coherent to the model are obtained via the Principle
of Virtual Displacements:

δLint =
∫

V

(
δεT

n σn + δεT
p σp

)
dV = δLext (15)

where Lint is the strain energy, Lext stands for the work of external loads and δ indicates the virtual variation.
Since the cross-section functions Fτ are not dependent on y, the strain vectors can be written by coupling
Eqs. 5 and 13:

εn =
(
Dnp Fτ I

)
Ni qτi + Fτ

(
Dny Ni I

)
qτi

εp =
(
Dp Fτ I

)
Ni qτi

(16)

By substituting the previous expression in Eq. 15 and using Eq. 8, the virtual variation is written in a
compact notation depending on the virtual variation of nodal displacements:

δLi = δqT
τi K ij τ s qsj (17)

The matrix K ij τ s has dimension 3 × 3 and is the fundamental nucleus of the Structural Stiffness Matrix.
For the sake of brevity, it is shown how to compute only the K ij τ s

yz component, for instance:

K ij τ s
yz = C̃55

∫

Ω

Fτ,z Fs dΩ
∫

l

Ni Nj,y dy + C̃45

∫

Ω

Fτ,x Fs dΩ
∫

l

Ni Nj,y dy +

C̃13

∫

Ω

Fτ Fs,z
dΩ

∫

l

Ni,y
Nj dy + C̃36

∫

Ω

Fτ Fs,x
dΩ

∫

l

Ni,y
Nj dy

(18)

The comprehensive set of nine components of fundamental nucleus are addressed in Appendix. It should
be noted that no assumptions on the expansion order have been done. Therefore, it is possible to obtain
refined beam models without changing the formal expression of the nucleus components. In fact, it has the
property to be invariant with respect to the theory order and the element type. Shear locking is corrected
through selective integration.31

As far as the nodal load vector is concerned, it is obtained by writing the virtual work of external loads
δLext. The nodal load vector variationally coherent to the above method is derived here for the case of a
generic concentrated load P acting on the load application point

(
xP , yP , zP

)
:

P =
{

Pux Puy Puz

}T

(19)

At first, the virtual work due to P involves the virtual variation of the displacement vector:

δLext = δuT P (20)

Finally, by substituting Eq. 13, δLext can be written involving the virtual variation of nodal displacements:

δLext = δqT
τi Fτ Ni P (21)

where Fτ is evaluated in (xP , zP ) and Ni is calculated in yP . Any other loading condition can be similarly
treated.

V. Aeroelastic notation

The invariance and the increasing accuracy of the model as the expansion order increases allows to study
beam-like structures, where one dimension is predominant but not insomuch as to rigorously account them
as beams. It means that the model is able to evaluate the structural behavior also of wing systems. That
is the reason why it is possible to extend the formulation to the aeroelastic analysis of non-planar wing
configurations.

A global coordinate system x−y−z is placed on the leading edge point of the root wing section airfoil (see
Fig. 4). The global x axis is parallel to the free stream velocity V ∞ and directed toward the trailing edge,
assuming the yaw angle of the aircraft equal to zero. Whereas, the global y axis goes along the spanwise
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direction toward the tip of the right half-wing.
Considering a wing system generally oriented in the 3D space, the method allows to divide it into a set

of large trapezoidal wing segments, according to the same logic used in other previous aeroelastic works (see
Demasi and Livne32). The number of these trapezia is denoted as NWS . As we will see later, the wing system
will be divided into aerodynamic panels. In the present formulation they are located on the aerodynamic
reference surfaces of the wing system with initial angle of attack equal to zero. Thanks to the possibility
of studying non-planar configuration, each wing segment can have dihedral or sweep angle. Moreover, it is
assumed that all the wing segments have two opposite segments parallel to the wind direction, i.e. parallel
to the global x axis.

Each wing segment contains a local coordinate system xS−yS−zS , where S is the superscript for the
generic wing segment. As shown in Fig. 2, the wing segment itself lies in the plane xS − yS . In particular,
the xS axis has to be always parallel to the free stream V ∞. As a consequence, xS is parallel to global x
axis for each wing segment. The yS axis is not parallel to y only if the wing segment has a dihedral different
from zero. The origin of the local coordinate system is placed on one of the two leading edges of the wing
segment. The point is located so that the other one has a positive value of local yS coordinate.

Figure 2. Local coordinate system and numbering convention for a Wing Segment.

The aerodynamic method here chosen is the Vortex Lattice Method38 (VLM). The structure is subdivided
into a lattice of quadrilateral aerodynamic panels. A horseshoe element is placed on each panel. This element
consists of a straight bound vortex BC and two semi-infinite trailing vortex lines AB and CD. Here, the
bound vortex is placed at the panel’s quarter chord line and the load point PL is in the middle of such a
bound vortex. Whereas, the control point PC (also called collocation point) is located at the center of the
panel’s three-quarter chord line.38 The typical horseshoe scheme is shown in Fig. 3.

B

C

D

A

¥

¥

y
s

xs

zs

z

y

x

ej
Dx

2

Dx
4

Control Point

·

·

Dx
4

Load Point

j     Panelth

ej2

Figure 3. The horseshoe convention followed for the VLM.

Since the structure has been subdivided into a set of wing segments, the aerodynamic mesh lies on these
reference surfaces, which are assumed to have an angle of attack equal to zero. That does not mean that the
incidence of the wing system is not considered in the model, but just that it is not faced in the discretization.
In fact, the angle of attack of the structure will be used in the construction of a term denoted as LRHS .
However, it must not be very large, in order to have a problem case where the linear aerodynamic analysis
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remains a valid approximation.
For each wing segment it is assigned a straight beam perpendicular to the global x axis and contained in

the plane xS−yS , over which the 1D structural refined elements mesh is created. Each beam element must be
entirely contained in a plane orthogonal to the global x axis (wind direction). All the elements constituting
the whole structural mesh are connected. For instance, Fig. 4 shows the application of the method to a
typical C-Wing configuration, which is divided into differently coloured wing segments.

Figure 4. Unidimensional structural mesh and bidimensional aerodynamic mesh of wing segments.

It should be noted that the origin of the coordinate system on the cross-section of a generic finite element
does not necessarily coincide with the centroid of the section itself. Moreover, such an origin in general can
be located outside the cross-section area, as shown in Fig. 1.

To summarize, the model studies the deformation of a wing system generally oriented in the 3D space
by means of refined finite elements in general not lying on the wing surface.

VI. Aeroelastic formulation

At first, the above mentioned structural formulation has to be extended in order to study generally oriented
beam-like structures. In fact, the fundamental nuclei have been obtained in the local coordinate system of
the element. Considering the generic wing segment S, Eq. 17 written in its local coordinate system becomes:

δLi = δqS T
τi loc K ij τ s S

loc qS
sj loc (22)

This expression is in general valid in local coordinate system, whose yS axis is parallel to the element beam
axis. For the general purpose of this work, it is necessary to extend the formulation to the global coordinate
system. The problem consists in a typical transformation of coordinates by means of orthogonal matrices.
Let iS , jS and kS be the unit vectors of the local coordinate system. They are expressed in global coordinates
via the corresponding unit vectors i, j and k (see Fig. 2):

iS = eS
11 i + eS

12 j + eS
13 k

jS = eS
21 i + eS

22 j + eS
23 k

kS = eS
31 i + eS

32 j + eS
33 k

(23)

where the 9 coefficients are the global coordinates of local unit vectors. By isolating such terms in a matrix
3× 3, any vector of local nodal displacements can be expressed in global coordinates as follows:

qS
sj loc = eS · qS

sj (24)

The substitution of Eq. 24 in Eq. 22 leads to write the fundamental nucleus of Structural Stiffness Matrix
in the global coordinate system:

δLi = δqS T
τi loc K ij τ s S

loc qS
sj loc = δqS T

τi

[
eS T · K ij τ s S

loc · eS
]

qS
sj (25)

7 of 23

American Institute of Aeronautics and Astronautics



Before the assembly procedure the FE structural matrices must be rotated to impose the compatibility of
the displacements expressed in global coordinates:

K ij τ s S =
[
eS T · K ij τ s S

loc · eS
]

(26)

The assembly procedure on beam elements of different wing segments will be performed in the classical way,
summing up the stiffness terms corresponding to the common nodes.

A. Splining and Pseudo-Structural Points

The coupling of structural and aerodynamic fields is carried out by a splining method. Although the
present Finite Element Model is unidimensional, the splining is not performed by means of the Beam Spline
method,33−34 but indeed of the Infinite Plate Spline method35−37 (IPS). The reason is due to the accuracy
of refined element in predicting displacements of points not necessarily coincident with the actual FEM nodes
and not even located on the element axis.

On the reference plane of each Wing Segment (the generic one is indicated with superscript S) a set
of NS

PS aeroelastic points is chosen and the corresponding displacements are computed by the structural
formulation. Then, these deflections will be utilized as input data in order to mathematically describe the
deformed surface of wing segment S via IPS method. The points forming the set are denoted as pseudo-
structural points, precisely because they has the meaning of structural points (the spline surface is treated
as a plate by IPS method). The adjective pseudo is adopted to not confuse them with structural nodes of
the beam elements.

Defining the vector x as the vector which contains the global coordinates of pseudo-structural points of
the entire wing system, it is possible to extract the global coordinates of the pseudo-structural points located
on wing segment S and define the vector xS by means of matrix JS . Since the point 2S is the origin of
the local coordinate system of wing segment S (see Fig. 2), the vector x2S (with dimension 3NS

PS × 1) is
introduced:

x2S =
{

x2S y2S z2S ... x2S y2S z2S

}T

(27)

The coordinates xS
loc of the pseudo-structural points lying on wing segment S expressed in the local reference

system are determined by defining the block diagonal matrix ES , where the transformation matrix eS is
repeated as many times as NS

PS :

xS
loc = ES ·

{
xS − x2S

}
= ES ·

{
JS · x − x2S

}
(28)

Remembering that q is the vector of the nodal degrees of freedom (in global coordinate system) of all nodes
on the beams, it is possible to extract the vector qS of nodal displacements (in global coordinate system)
corresponding to wing segment S only, by means of matrix IS .

It is now possible to convert the vector qS in local coordinates using a formula similar to Eq. 24, by
introducing the matrix ES

q . It is a block diagonal matrix containing the transformation matrix eS for each
degree of freedom of the structural nodes corresponding to wing segment S. Therefore:

qS
loc = ES

q · qS = ES
q · IS · q (29)

To utilize the Finite Element formulation, it is mandatory to individualize the corresponding finite element
for each pseudo-structural point. The parameter to be analyzed is the local yS coordinate, which is extracted
from vector xS

loc. In fact, by using that value it is possible to “assign” that pseudo-structural point to a
particular beam element on wing segment S. Everything is expressed in local coordinates and so the FEM
equation 30 can be used to calculate the local displacements according to CUF:

uS
loc

(
xS , yS , zS

)
= Fτ

(
xS , zS

)
uS

τ loc

(
yS

)
= Fτ

(
xS , zS

)
Ni

(
yS

)
qS

loc (30)

The same expression can be repeated for all the pseudo-structural points of wing segment S, noting that each
of them has zero angle of attack and so zS = 0. Resuming Eq. 29, this means that for each wing segment it
is possible to define a matrix Y S which relates the vector of nodal degrees of freedom in local coordinates of
wing segment S with the displacements ũS

loc (in local coordinates) of all the pseudo-structural points. Then,
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calling IS
z the constant matrix which allows the extraction of zS component of the local displacements it is

possible to write Eq. 31:

ZS
loc = IS

z · ũS
loc = IS

z · Y S · qS
loc = IS

z · Y S · ES
q · IS · q (31)

The vector ZS
loc in Eq. 31 contains the zS coordinates of the deformed configuration and so the input data

for the spline method. Using the fitted surface spline shape it is possible to calculate the derivatives of such
a shape and the associated local angle of attack. The local z coordinate of the pseudo-structural point i on
wing segment S is:

ZS
i loc = ZS

i loc

(
xS

i loc, yS
i loc

)
(32)

The assumption that the displacements are not very large is made. In fact, a linear theory is utilized,
then it is appropriate to assume small displacements. So, the aerodynamic linear theory holds. Under this
assumption, it is reasonable to consider the local in-plane coordinates of the nodes, the load and control
points of a generic wing segment constant. Only the out-of-plane local displacement will be different from
zero. Under this hypothesis, all the splining matrices are constant and they can be calculated once.

According to the IPS method, for each pseudo-structural point i of wing segment S the corresponding
ZS

i loc is written as:

ZS
i loc

(
xS

i loc, yS
i loc

)
= aS

0 + aS
1 xS

i loc + a2 yS
i loc +

NS
P S∑

j=1

Fj KS
ij

(
rS
ij loc

)2 ln
(
rS
ij loc

)2 (33)

where:
KS

ij =
(
rS
ij loc

)2 ln
(
rS
ij loc

)2 (34)
(
rS
ij loc

)2 =
(
xS

i loc − xS
j loc

)2 +
(
yS

i loc − yS
j loc

)2 (35)

noting that also the counter j refers to pseudo-structural points. For the sake of brevity, the details about the
IPS method35−37 are not reported here. Writing Eq. 33 for all the pseudo-structural points and combining
the infinite conditions, the following matrix notation is obtained:

ZS?
loc =




0 RS

[
RS

]T

KS


 · P S = GS · P S (36)

By inverting Eq. 36, it is possible to find the NS
PS + 3 unknowns represented by the spline coefficients P S .

Once obtained the coefficients necessary to describe the spline, then the aerodynamic points of the panels
are taken into account. To impose the boundary conditions the derivatives with respect to xS are required
at control points. Therefore, it is necessary to differentiate the spline equation 33 with respect to xS and
calculate the result in the local coordinates of control points. Let

(XS
k loc , YS

k loc

)
be the local coordinates (in

the reference plane) of the kth control point. Its slope is given by:

dZS
k loc

dxS

(XS
k loc , YS

k loc

)
= a1 +

NS
P S∑

j=1

Fj DS
kj = a1 +

NS
P S∑

j=1

Fj

[
2

(XS
k loc − xS

j loc

) [
1 + ln

(RS
kj loc

)2
]]

(37)where: (RS
kj loc

)2 =
(XS

k loc − xS
j loc

)2 +
(YS

k loc − yS
j loc

)2 (38)

Following the exposed procedure for all the NS
AP (= Number of Aerodynamic Panels of wing segment S)

locations on the surface, the slopes can be written as functions of the spline coefficients in a compact form:

dZS
loc

dxS
= DS · P S (39)

Now, it is advantageous to write an expression able to relate directly the output and the input data, repre-
sented by the zS coordinates of pseudo-structural points in the deformed configuration:

dZS
loc

dxS
= DS · P S = DS ·

[
GS

]−1

· ZS?
loc = DS · SS · ZS

loc (40)
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where SS is the matrix
[
GS

]−1

with the first three columns eliminated, without changing the result.
Combining Eqs. 31 and 40, the following expression relates the slope of control points of all the panels in
wing segment S to the vector of nodal degrees of freedom of the whole structure:

dZS
loc

dxS
= DS · SS · IS

z · Y S · ES
q · IS · q = DS aS

3 · q (41)

Equation 41 can be written for all wing segments and so an assembly procedure is required to have all the
local slopes of all the panels of the entire wing system as a function of degrees of freedom of all the structural
finite elements.

While calculating the generalized aerodynamic matrices, it is required to transform lift forces at aero-
dynamic load points into nodal forces on the structural grid nodes. This transformation will involve the
displacements of load points. The matrix relating the input displacements at pseudo-structural points to
the output deflections at load points is addressed as D̃S ?

and built following the spline equation 33. The
procedure needs the local coordinates of load points ỸS

I loc. Finally, the displacement vector at load points
can be written as function of the nodal degrees of freedom by using a procedure formally identical to the
one used to obtain Eq. 41:

Z̃S

loc = D̃S ? · P S = D̃S ? · SS · IS
z · Y S · ES

q · IS · q = D̃S ?
aS

3 · q (42)

The assembly process is carried out by calculating all the products (for all wing segments) DS aS
3 and

D̃S ?
aS

3 and observing that each aerodynamic panel can be included only in one trapezoidal wing segment.
In fact, different wing segments don’t share common aerodynamic panels. After the assembly, Eqs. 41 and 42
written at wing system level become:

dZ loc

dx
= A3 · q (43)

Z̃ loc = Ã
?

3 · q (44)

By means of the exposed matricial notation, Eqs. 43 and 44 allow to directly relate displacements and slopes
at aerodynamic points of the structure to its nodal degrees of freedom.

B. Steady Aerodynamic Forces

Now the derivation of aerodynamic loads is faced. According to the Vortex Lattice Method,38 the pressures
acting on the deflecting surface are transferred as lift forces located on loads points of the aerodynamic
panels of the whole structure. Considering the generic jth panel of wing segment S and dimensionless
pressure acting on it, the modulus of the lift force applied at the corresponding load point is given by:

∣∣LS
j

∣∣ =
1
2

ρ∞ V 2
∞ ∆xj 2ej ∆pS

j (45)

where the quantity ∆xj is the average chord of the panel and ej refers to its half-length along yS local axis
(wing spanwise direction). Since the reference aerodynamic configuration has no angle of attack, it should
be noted that lift forces are normal to the panels and perpendicular to the wind direction. Let ∆p be the
vector containing the dimensionless pressure loads acting on all the aerodynamic panels of the structure,
normalized with respect to the dynamic pressure. The lift forces moduli are written in a matrix form:

L =
1
2

ρ∞ V 2
∞ ID · ∆p (46)

where ID contains the panels’ geometrical data. The VLM allows to describe the dimensionless normalwash,
normalized with respect to V∞, as function of the pressures acting on each aerodynamic panel:

w = AD · ∆p (47)

where AD is the Aerodynamic Influence Coefficient Matrix. It is calculated by using the geometrical data
of the aerodynamic mesh. In the steady case, considering that the structure changes configuration when it
deforms, the boundary condition used for the Vortex Lattice formulation is:

w =
dZ loc

dx
(48)
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Considering small angles of deflection because of the model’s linearity, Eq. 48 means that the dimensionless
normalwash has to equal the slope at the aerodynamic control point. The boundary condition is not only a
constraint expressing the coupling between aerodynamics and deflection of the structure, but in this case it
is the interface able to correlate the lifting surface to the nodal degrees of freedom. As a result, by combining
Eqs. 43 and 46 - 48, the vector containing the aerodynamic forces is written as function of nodal degrees of
freedom:

L =
1
2

ρ∞ V 2
∞ ID ·

[
AD

]−1

· w =
1
2

ρ∞ V 2
∞ ID ·

[
AD

]−1

· A3 · q =
1
2

ρ∞ V 2
∞ c · q (49)

where the matrix c has been conveniently introduced.

C. The Aeroelastic Stiffness Matrix

The aerodynamic forces of Eq. 49 are applied at load points of the aerodynamic panels. They are transferred
to the structural nodes using the following algorithm. The result will be a vector of equivalent nodal loads,
by means of which the construction of the Aeroelastic Stiffness Matrix will be carry out. From Eq. 49 it is
possible to extract the forces applied only on panels of the generic wing segment S:

LS =
1
2

ρ∞ V 2
∞ cS · q (50)

where cS is directly obtained from c. The lift forces are parallel and perpendicular to the surface representing
the wing segment S, then local xS , yS components of the aerodynamic loads are zero. Hence, LS contains not
only the moduli of the loads on aerodynamic panels of wing segment S, but also their local zS components.

The transfer from loads at the aerodynamic points to the energetically equivalent loads at structural
nodes is performed via the Principle of Virtual Displacements. Resuming Eq. 42, the balance between the
virtual work carried out by lift forces on the virtual variation of displacements of load points and the virtual
work carried out by equivalent nodal forces on the virtual variation of nodal degrees of freedom is written
as:

δW =
{

δZ̃S

loc

}T

· LS =
{

D̃S ?
aS

3 · δq
}T

· LS = δq T ·
[
aS

3

]T

·
[
D̃S ?

]T

· LS = δq T · LS
str (51)

where the virtual variation of nodal degrees of freedom q is considered. The vector LS
str contains the nodal

forces on all structural nodes. The superscript S indicates that only the aerodynamic loads applied at the
panels of wing segment S have been taken into account. Combining Eqs. 51 and 50 it is possible to deduce:

LS
str =

[
aS

3

]T

·
[
D̃S ?

]T

· LS =
1
2

ρ∞ V 2
∞

[
aS

3

]T

·
[
D̃S ?

]T

· cS · q (52)

If all the contributions of all wing segments are added following Eq. 52, the loads on the structural nodes

can be obtained. This operation means that an assembly of the matrices
1
2

ρ∞ V 2
∞

[
aS

3

]T

·
[
D̃S ?

]T

· cS is
required. The final assembled matrix is named −K aero, where the negative sign is adopted for the sake of
convenience. The expression of aerodynamic loads on all the structural nodes after all wing segments have
been taken into account is:

Lstr = −Kaero · q (53)

Such a term can go to the left hand side of the aeroelastic equation system and summed up to the product
due to the Structural Stiffness:

K str · q = Lstr = −Kaero · q (54)

or [
K str + Kaero

]
· q = 0 (55)

or
K aeroelastic · q = 0 (56)

The isolation of the stiffness matrices in Eq. 55 leads to a unique term, called Aeroelastic Stiffness Matrix.
Practically, it substitutes the Structural Stiffness Matrix in the FEM system, so that the stiffness of the
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structure is sensible to and inclusive of the aerodynamic loads applied. In this way the deflection due to
such loads is already taken into account directly in the stiffness of the system.

From Eq. 56 it appears that there is no motion. It occurs because the angle of attack so far considered
is zero. So, there is no motion unless we have external non-aerodynamic loads, i.e. some mechanical loads.
To solve this problem, a given known shape of the structure is assigned, for instance, by points having
local coordinates xS and yS of pseudo-structural points. Whereas, the zS local out-of-plane coordinates
are not equal to zero and describe a shape with different from zero angle of attack. The new points will
be denoted as perturbed pseudo-structural points. The corresponding aerodynamic loads are computed as
concentrated forces localized on the load points and are transformed as energetically equivalent loads at the
structural nodes. Following the same procedure used to find the Aeroelastic Stiffness Matrix, the loads LRHS

on the structural nodes can be obtained (the subscript RHS means Right Hand Side). At the end, the final
aeroelastic equation to be solved is:

[
K str + K aero

]
· q = LRHS (57)

or
Kaeroelastic · q = LRHS (58)

Equation 58 allows to compute the vector of unknowns nodal degrees of freedom q. Now that the right hand
side is different from zero, we have a solution.

VII. Results

The structural and aeroelastic results are presented here. The analyses have been executed on a series
of different geometrical configurations. The beam’s cross-sections analyzed in this work are rectangular
or square and clamped boundary condition is accounted for. An isotropic material is used. The Young’s
modulus E is equal to 69 [GPa] and the Poisson’s ratio ν is equal to 0.33. For the exposed results a selective
integration of the shape functions along the beam axis is adopted.

The structural assessment of the refined finite element is carried out in order to validate its propriety in
comparison with some classical analytical results and NASTRAN simulations. Beams subjected to bending
and torsional loadings are analyzed. As far as the aeroelastic assessment is concerned, some aeroelastic
analyses have been performed on planar and non-planar wing configurations. The corresponding results
have been validated with NASTRAN.

A. Structural Assessment

For the first structural assessment, the beam’s rectangular cross-section has dimension 3×60 [mm], whereas
the length L is equal to 600 [mm]. For example, the beam could simulate the wind tunnel model for a glinder
wing. The loading condition is a pure bending about the local xS axis. The concentrated bending load Puz

(equal to 1N) acts on the centroid of the tip cross-section. The mechanics of the beam is described in terms
of dimensionless maximum vertical displacement, ūz max, which is computed at the center point of the tip
cross-section. Such a dimensionless displacement is normalized with respect to the following value given by
the Euler-Bernoulli beam theory, which is taken as reference solution:

u ?
z max =

Puz L3

3 E I
= 7.7295 mm ū ?

z max = 1.0000 (59)

where I is the moment of inertia of the beam cross-section. A structural convergence study is carried out
to evaluate the effect of the number of Finite Elements NEL constituting the structural mesh on results.
Then, a further structural convergence study on the effect of the expansion order N defining the Unified
Formulation is performed. Such convergence analyses are conducted for the three elements B4, B3, B2, with
4, 3, 2 nodes respectively. Their results are shown in Tables 2 - 4.

According to the typical behavior of FEM solutions, the maximum tip displacement increases and becomes
more accurate as NEL increases. An excellent correspondence is obtained between the refined model’s and
NASTRAN results, which are slightly different from the approximated Euler-Bernoulli solution of Eq. 59.
When the expansion order is N = 4, Fig. 5 describes the behavior of the solution when the number of
elements (B2, B3 and B4) increases and proves graphically such a correspondence. The results and the
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accuracy of the structural model change as N changes. Anyway, after N = 3 the final result appears not to
be evidently variable and then the convergence on N is reached. Finally, the deflection along the beam axis
is investigated in Fig. 6.

As second load case, the cantilever beam is subjected to a torsional loading located on the tip cross-
section. The previous beam has been replaced with a square cross-section beam, but keeping the same
lenght. It results to be slender with a high span-to-height ratio. The load is reproduced by two opposite
concentrated forces acting on two points of the tip cross-section symmetrical with respect to the vertical z
axis.

The investigation about the effect of expansion order N on the deflection of tip cross-section is summarized
in Fig. 7. The first-order theory predicts the planarity of the cross-section in the deformed configuration.
Second and third-order models yield similar results, with the deformation no more planar. Finally, the
fourth-order clearly shows the warping effect on the tip cross-section. Hence, the deformed section has not
a planar behavior, differently from the first-order theory and classical models. It has been demonstrated
that the refined model for higher-order expansion is able to study beam-like structures more accurately
than the classical models, highlighting the out-of-plane displacements of beam cross-sections. Then, the
Unified Formulation provides an approximation of the tridimensional structural behavior in spite of the
unidimensional discretization.

B. Aeroleastic Assessment

The aeroelastic assessment has the goal to validate the aeroelastic model by comparison with NASTRAN
solutions (SOL 144). It is performed a convergence study similar to the analyses carried out for the struc-
tural assessment. Now, such a study evaluates the correctness of the interaction between structures and
aerodynamics. For this purpose, the convergence on the number of aerodynamic VLM panels NAP used to
discretize the reference surfaces of wing segments is also investigated.

Here, the cases considered consist in three different wing configurations. The static aeroelastic responses
of an unswept wing, a straight wing with dihedral and a swept tapered wing are investigated. In fact, the
present beam formulation would be able to analyse a number of non-planar combinations of swept, tapered,
dihedral wing segments. By exploiting the powerful of the method, the problem is solved by using right
half-wing of each system only. Therefore, the aerodynamic computation takes into account the symmetry
condition. The cross-section is always rectangular with thickness equal to 3 [mm]. For first two cases the
chord is constant and equal to 60 [mm], whereas the root and tip chords for the tapered wing are 100 [mm]
and 40 [mm] respectively (see Fig. 8). The wingspan b does not change for the three cases and is equal to
1200 [mm]. The dihedral angle Γ used in case 2 is equal to 20 [deg].

For the previous assessment the input loads were only mechanical and not aerodynamic. Now, the si-
tuation is opposite, since the only input load consists in the fact that the wing system is exposed to the
free stream. Its velocity is equal to 40 [m/s] and the considered air density is equal to 1.225 [kg/m3]. The
angle of attack for all the treated cases is equal to 1 [deg]. Again the mechanics of the beam is described
in terms of the maximum vertical displacement, uz max, which now is computed on the leading edge of the
tip section. The analyses have been carried out by using the more accurate B4 element and its convergence
for each aeroelastic case is reported on Tables 5, 7 and 9. Also for these aeroelastic problems, the maximum
tip displacement increases for higher-order theories and becomes more accurated as NEL increases. It is to
note how the swept tapered requires a slightly greater number of elements to reach convergence, due to its
particular geometry.

For the investigated cases, Tables 6, 8 and 10 summarize the values of static aeroelastic deflections as the
number of aerodynamic VLM panels increases. Moreover, it is reported the trend as the expansion order N
of the theory changes. The results are validated with commercial code NASTRAN (sol 144), which has per-
formed aeroelastic analysis by coupling Doublet Lattice Method and structural shell elements. As expected,
the solution approaches to more realistic values as the number of aerodynamic elements increases. Such a
convergent trend occurs for all the shown theories, but well correspondence between the aeroelastic model’s
and NASTRAN results is obtained only when higher-order theories are involved. In particular, the typical
torsional effect about y axis due to aerodynamic loadings is more accurately highlighted for large values of
N . For swept tapered wings such an effect is presented in Fig. 11, whereas the tridimensional deflections of
cases 1 and 3 are shown in Fig. 9 and 10.
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Convergence study for Element B4

Load case: Bending ū ?
z max = 1.0000 NASTRAN: 0.9880

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 0.9999 1.0000 1.0000 0.9344 0.9601 0.9604
5 1.0000 1.0000 1.0000 0.9486 0.9766 0.9776
10 1.0000 1.0000 1.0000 0.9532 0.9813 0.9826
20 1.0000 1.0000 1.0000 0.9555 0.9836 0.9850
40 1.0000 1.0000 1.0000 0.9567 0.9848 0.9862

Table 2. Structural case: Effect of the number of B4 elements on ūz max.

Convergence study for Element B3

Load case: Bending ū ?
z max = 1.0000 NASTRAN: 0.9880

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 0.9999 1.0000 1.0000 0.9110 0.9307 0.9307
5 1.0000 1.0000 1.0000 0.9403 0.9669 0.9674
10 1.0000 1.0000 1.0000 0.9492 0.9772 0.9782
20 1.0000 1.0000 1.0000 0.9535 0.9816 0.9829
40 1.0000 1.0000 1.0000 0.9557 0.9838 0.9852

Table 3. Structural case: Effect of the number of B3 elements on ūz max.

Convergence study for Element B2

Load case: Bending ū ?
z max = 1.0000 NASTRAN: 0.9880

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 0.9375 0.9375 0.9375 0.7907 0.7978 0.7978
5 0.9900 0.9900 0.9900 0.9035 0.9238 0.9240
10 0.9975 0.9975 0.9975 0.9332 0.9583 0.9589
20 0.9994 0.9994 0.9994 0.9462 0.9735 0.9745
40 0.9996 0.9999 0.9999 0.9522 0.9801 0.9813

Table 4. Structural case: Effect of the number of B2 elements on ūz max.
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Figure 5. Convergence study for Refined Elements.

Figure 6. Deflection of the beam utilized for the convergence study.
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Figure 7. Deformed tip cross-section of the beam subjected to torsional load as N increases.

VV
VV

Figure 8. Wing configurations considered for the aeroelastic analysis.
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Aeroelastic case 1: straight wing

Stream Velocity : 40 m/s α = 1 deg NASTRAN: 9.1500

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 8.8074 8.8076 8.8123 8.5268 8.7961 8.8019
5 8.8073 8.8075 8.8122 8.7092 9.0097 9.0243
10 8.8073 8.8075 8.8122 8.7685 9.0710 9.0895
20 8.8072 8.8075 8.8122 8.7980 9.1012 9.1209
40 8.8071 8.8075 8.8122 8.8126 9.1164 9.1369

Table 5. Convergence study: Effect of the number of B4 elements on uz max [mm]. Aerodynamic mesh: 6 × 60
VLM panels. Symmetry enabled.

Aeroelastic case 1: straight wing

Stream Velocity : 40 m/s α = 1 deg

NPANELS EBBM TBM N = 1 N = 2 N = 3 N = 4 NASTRAN

2× 20 8.9903 8.9904 8.9953 8.9936 9.3029 9.3231 9.3253
4× 40 8.8545 8.8546 8.8594 8.8473 9.1521 9.1719 9.2004
6× 60 8.8072 8.8075 8.8122 8.7980 9.1012 9.1209 9.1500

10× 100 8.7679 8.7681 8.7727 8.7565 9.0585 9.0781 9.1083

Table 6. Convergence study: Effect of the number of aerodynamic VLM panels on uz max [mm]. Structural mesh:
20 elements B4. Symmetry enabled.

Aeroelastic case 2: straight wing with dihedral

Stream Velocity : 40 m/s α = 1 deg NASTRAN: 11.2659

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 10.7476 10.7478 10.7543 10.5085 10.8235 10.8303
5 10.7475 10.7476 10.7542 10.7334 11.0902 11.1071
10 10.7471 10.7474 10.7542 10.8063 11.1661 11.1880
20 10.7481 10.7488 10.7542 10.8425 11.2033 11.2268
40 10.7549 10.7535 10.7542 10.8606 11.2220 11.2465

Table 7. Convergence study: Effect of the number of B4 elements on uz max [mm]. Aerodynamic mesh: 6 × 60
VLM panels. Symmetry enabled.
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Aeroelastic case 2: straight wing with dihedral

Stream Velocity : 40 m/s α = 1 deg

NPANELS EBBM TBM N = 1 N = 2 N = 3 N = 4 NASTRAN

2× 20 10.9702 10.9710 10.9766 11.0845 11.4524 11.4765 11.4779
4× 40 10.8050 10.8057 10.8114 10.9033 11.2658 11.2894 11.3277
6× 60 10.7481 10.7488 10.7542 10.8425 11.2033 11.2268 11.2659

10× 100 10.7000 10.7011 10.7063 10.7914 11.1507 11.1740 11.2148

Table 8. Convergence study: Effect of the number of aerodynamic VLM panels on uz max [mm]. Structural mesh:
20 elements B4. Symmetry enabled.

Aeroelastic case 3: swept tapered wing

Stream Velocity : 40 m/s α = 1 deg NASTRAN: 6.3806

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 6.4814 6.4816 6.4837 6.1732 6.5183 6.5282
5 6.1779 6.1780 6.1800 6.0000 6.3359 6.3505
10 6.1352 6.1354 6.1373 6.0011 6.3344 6.3490
20 6.1246 6.1248 6.1267 6.0110 6.3464 6.3602
40 6.1220 6.1221 6.1240 6.0181 6.3542 6.3680

Table 9. Convergence study: Effect of the number of B4 elements on uz max [mm]. Aerodynamic mesh: 6 × 60
VLM panels. Symmetry enabled.

Aeroelastic case 3: swept tapered wing

Stream Velocity : 40 m/s α = 1 deg

NPANELS EBBM TBM N = 1 N = 2 N = 3 N = 4 NASTRAN

2× 20 6.2274 6.2275 6.2295 6.1197 6.4629 6.4771 6.4791
4× 40 6.1513 6.1514 6.1533 6.0386 6.3755 6.3894 6.4093
6× 60 6.1246 6.1248 6.1267 6.0110 6.3464 6.3602 6.3806

10× 100 6.1020 6.1022 6.1040 5.9875 6.3215 6.3354 6.3566

Table 10. Convergence study: Effect of the number of aerodynamic VLM panels on uz max [mm]. Structural
mesh: 20 elements B4. Symmetry enabled.
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Figure 9. Aeroelastic deflection of the straight wing for case 1 (α = 1◦).
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Figure 10. Aeroelastic deflection of the swept tapered wing for case 3 (α = 1◦).
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WING

UNDEFORMED WING

Figure 11. Torsional effect on tip cross-section of the swept tapered wing.
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Appendix

The set of nine components of fundamental nucleus K ij τ s is written in a comprehensive form as:

K ij τ s
xx = C̃22

∫

Ω

Fτ,x
Fs,x

dΩ
∫

l

Ni Nj dy + C̃26

∫

Ω

Fτ,z
Fs,x

dΩ
∫

l

Ni Nj dy +

C̃26

∫

Ω

Fτ,x
Fs,z

dΩ
∫

l

Ni Nj dy + C̃66

∫

Ω

Fτ,z
Fs,z

dΩ
∫

l

Ni Nj dy +

C̃44

∫

Ω

Fτ Fs dΩ
∫

l

Ni,y
Nj,y

dy

K ij τ s
xy = C̃23

∫

Ω

Fτ,x Fs dΩ
∫

l

Ni Nj,y dy + C̃36

∫

Ω

Fτ,z Fs dΩ
∫

l

Ni Nj,y dy +
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Ω
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dΩ

∫
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Ni,y
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Fτ Fs,x
dΩ

∫

l
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Nj dy
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dΩ
∫

l
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∫

Ω
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∫
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Ni Nj dy + C̃26

∫

Ω

Fτ,x Fs,x dΩ
∫

l

Ni Nj dy +

C̃16

∫

Ω

Fτ,z Fs,z dΩ
∫

l

Ni Nj dy + C̃66

∫

Ω

Fτ,x Fs,z dΩ
∫

l

Ni Nj dy +

C̃45

∫

Ω

Fτ Fs dΩ
∫

l

Ni,y Nj,y dy

K ij τ s
zy = C̃13

∫

Ω

Fτ,z Fs dΩ
∫

l

Ni Nj,y dy + C̃36

∫

Ω

Fτ,x Fs dΩ
∫

l

Ni Nj,y dy +

C̃55

∫

Ω

Fτ Fs,z dΩ
∫

l

Ni,y Nj dy + C̃45

∫

Ω

Fτ Fs,x dΩ
∫

l

Ni,y Nj dy

K ij τ s
zz = C̃11

∫

Ω

Fτ,z Fs,z dΩ
∫

l

Ni Nj dy + C̃16

∫

Ω

Fτ,x Fs,z dΩ
∫

l

Ni Nj dy +

C̃16

∫

Ω

Fτ,z Fs,x dΩ
∫

l

Ni Nj dy + C̃66

∫

Ω

Fτ,x Fs,x dΩ
∫

l

Ni Nj dy +

C̃55

∫

Ω

Fτ Fs dΩ
∫

l

Ni,y Nj,y dy
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