Passive Multiport RC Model Extraction for Through Silicon Via Interconnects in 3-D ICs

A. Ege Engin, Member, IEEE

Abstract—Parasitic RC behavior of VLSI interconnects has been the major bottleneck in terms of latency and power consumption of ICs. Recent 3-D ICs promise to reduce the parasitic RC effect by making use of through silicon vias (TSVs) [4], [5]. It is therefore essential to extract the RC model of TSVs to assess their promise. Unlike interconnects on metal layers, TSVs exhibit slow-wave and dielectric quasi-transverse-electromagnetic modes due to the coupling to the semiconducting substrate. This TSV behavior can be simulated using analytical methods, 2-D/3-D quasi-static simulators, or 3-D full-wave electromagnetic simulators. This paper presents a new macromodeling approach to extract parasitic RC models from such simulation data for interconnects in a 3-D IC.

Index Terms—Macromodeling, passivity, RC model, through silicon vias (TSVs).

I. INTRODUCTION

A CCURATE extraction of RC models are critical in time-domain simulation of interconnects to analyze latency, power consumption, and noise coupling. These electrical properties of interconnects have been the bottleneck in performance improvement based on CMOS scaling [1]–[3]. Recent 3-D ICs promise to reduce the parasitic RC effect by making use of through silicon vias (TSVs) [4], [5]. It is therefore essential to extract the RC model of TSVs to assess their promise. This paper presents a new macromodeling approach to extract an RC model not only for TSVs, but also other RC interconnect segments such as microbumps and redistribution layers in a 3-D IC.

The inductance of 3-D IC interconnects can also become an important parameter as the frequency increases. It has been reported that signal integrity is affected by the inductance above 10 GHz in 3-D ICs [6] and even at lower gigahertz regime for power integrity [7]. However, reducing the RC time-constant of the channel is considered the primary design factor for a high-speed TSV channel [8] as well as silicon interposers [9]. Closed-form expressions for TSV parasitic models have been studied in [10]–[17], where a specific geometry, such as a circular or square cross-section for TSVs, is assumed. Recently, an analytical equivalent circuit model was presented for coupled TSV structures in a 3-D IC [18]. This model accurately captured the transition between slow-wave and dielectric quasi-TEM modes, which are characteristic for metal–insulator–semiconductor transmission lines, as well as the MOS capacitance. The analytical approach in [18] is applicable to circular TSVs that have a 2-D field behavior. The approach in this paper allows to generate an RC model for arbitrary-shaped TSVs in the presence of other 3-D interconnect structures and substrate contacts.

Two different methodologies are presented to extract an RC model for 3-D IC interconnects:

1) Model Fitting: The analytical model in [18] works for circular TSVs that are placed at a large pitch compared to the TSV radius. For noncircular or closely spaced TSVs, a 2-D electric current simulation can provide the frequency-dependent admittance parameters. The topology of the original analytical model can still be used by fitting the capacitances and conductances in this model to the simulation results.

2) RC Vector Fitting: The topology of the analytical model is not adequate to model more complicated structures, such as when the redistribution layers are taken into account. The admittance data can be provided by the 3-D electric current or full-wave electromagnetic simulators, or even by measurements. This paper presents a general purpose multiport RC vector-fitting algorithm to extract an equivalent circuit model. This approach for the first time solves the problem of efficiently generating passive macromodels for 3-D IC interconnects. A one-port solution for this problem has been presented in [19]. In this paper, the RC macromodeling methodology is extended for multiport networks.

The model fitting methodology is customized for TSV arrays, so its application is limited to vertical interconnects in 3-D ICs. The RC vector-fitting approach, on the other hand, is a general macromodeling approach for all interconnect structures whose behavior can be approximated by an RC network. Both approaches are applicable when the inductance effects are negligible.

II. MODEL FITTING

Fig. 1 shows an RC model for circular TSVs, whose elements can be calculated using an analytical approach. The analytical model would however not be applicable in many cases, such as when the TSVs are square-shaped rather than circular. It would, however, be safe to assume that the same equivalent circuit topology as in Fig. 1 can adequately be used as a model. In this case, a 2-D electric current simulation can be performed to
extract the per unit length admittance matrix of the configuration. The model in Fig. 1 then can be fitted to this admittance matrix. Model fitting approach refers to fitting this model to simulated or measured data. Model fitting approach also works when there are multiple ground TSVs randomly distributed in the TSV array.

One low-frequency and one high-frequency simulation are needed to uniquely extract all the circuit elements for an array with any number of TSVs. The low-frequency data are used to extract the side-wall capacitances (C_i), whereas the high-frequency data is used to extract the substrate capacitance and conductance (C_{ij}, G_{ij}).

Assume that the admittance matrix is provided at a very low frequency Y_l and at a very high frequency Y_h. At the lowest frequency, all other parameters are neglected compared to the large impedance of the oxide capacitance C_i, hence, we obtain the model shown in Fig. 2(a). Note that this results in a T-model; therefore, it is more convenient to work with the admittance matrix to extract the oxide capacitances C_i. The admittance matrix of the model in Fig. 2(a) can be found as

$$Z_{ox} = \begin{bmatrix}
Z_1 + Z_0 & Z_0 & \cdots & Z_0 \\
Z_0 & Z_2 + Z_0 & \cdots & Z_0 \\
\vdots & \ddots & \ddots & \vdots \\
Z_0 & Z_0 & \cdots & Z_N + Z_0
\end{bmatrix}$$ (1)

where $Z_i = 1/(j\omega C_i)$. All the off-diagonal terms in Z_{ox} are equal to Z_0, the impedance of the ground TSV oxide capacitance (in addition to any depletion capacitance). Hence, the simulated admittance matrix is inverted to obtain $\overline{Z}_l = \overline{Y}_l^{-1}$ at the lowest frequency. Since the model in Fig. 2(a) is approximate, there will be small discrepancies between the off-diagonal elements of \overline{Z}_l. Therefore, the average of all the off-diagonal terms can be taken to obtain C_0. The remaining oxide capacitances are obtained from the diagonal terms.

Next, the simulation data obtained at high frequency are used. The oxide capacitances are deembedded from the model in Fig. 1 resulting in the deembedded model as shown in Fig. 2(b). The deembedding can also be done most conveniently in terms of the impedance matrix as

$$Z_{Si} = Z_h - Z_{ox}$$ (2)

where Z_{Si} is the impedance matrix of the model in Fig. 2(b). In (2), Z_{ox} is calculated at the high frequency point. Since Fig. 2(b) corresponds to a π-model, it can be most conveniently represented in terms of its admittance matrix as

$$\overline{Y}_{Si} = \begin{bmatrix}
\sum_{i=1}^N Y_{1i} & -Y_{12} & \cdots & -Y_{1N} \\
-Y_{21} & \sum_{i=1}^N Y_{2i} & \cdots & -Y_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
-Y_{N1} & -Y_{N2} & \cdots & \sum_{i=1}^N Y_{Ni}
\end{bmatrix}$$ (3)

where the branch admittances are given by

$$Y_{ij} = Y_{ji} = G_{ij} + j\omega C_{ij}.$$ (4)

Hence, once the impedance matrix \overline{Z}_{Si} using (2) is obtained at the high frequency point, we can take its matrix inverse and
uniquely extract all the silicon conductances and capacitances using (3).

A. Numerical Example

This method has been applied on six coupled TSVs as shown in Fig. 3. The TSVs have the following parameters:
1) Pitch = 5 μm,
2) TSV side length = 2 μm,
3) Oxide thickness = 0.5 μm,
4) Depletion width = 0.74 μm,
5) Silicon permittivity = 11.9,
6) Silicon conductivity = 10 S/m,
7) SiO₂ permittivity = 3.9.

Fig. 3 shows the voltage distribution when the top right TSV is kept at 1V, while all the other TSVs are grounded. The admittance matrix was extracted for the port assignment shown in the figure. Two of the TSVs were assigned to ground, whereas there were four signal TSVs. The simulations were done using a 2-D quasi-static simulator (the electric current module in COMSOL [20], which calculates per unit length admittance parameters of 2-D structures). An electric insulation boundary condition has been used, which enforces that the current density is parallel to the outside boundaries (i.e., there is no outward flow of the displacement current from the simulation boundaries).

Fig. 4 shows the admittance parameters related to TSV 2 as an example. The model was generated by using the simulation data at only the lowest and highest frequency points. A very good agreement to simulation was obtained following the presented model fitting methodology. The extracted model was also checked for passivity. The obtained circuit model included negative capacitances and conductances. However, the overall model was observed to be passive, since all eigenvalues of the capacitance and conductance matrix were positive.

III. Single-Port RC Vector Fitting

Postlayout simulation typically requires more accurate data that capture 3-D coupling effects including the parasitic coupling to metal layers, microbumps, and active circuits. An example is shown in Fig. 5, where the redistribution layers and a substrate contact is included in addition to the TSVs. In this case, there are more coupling paths than the simple electrical model in Fig. 1 suggests, so the model fitting approach in previous section may not be accurate. A more general approach for extracting a macromodel of the interconnects is required, where the circuit topology is not fixed.

This paper introduces the RC-vector fitting approach that has been previously used for generating Debye models of arbitrary order for organic and ceramic dielectric materials [21]. The basic method provides a guaranteed passive RC model for a one-port network. Table I provides a snapshot of this novel algorithm compared to the standard vector fitting algorithm [22]. The standard vector fitting algorithm does not guarantee passivity, and generates a general RLC model. On the other hand, macromodels that are not passive may result in unstable time-domain responses [2]. Hence, ensuring passivity is critical in the generated model. The general approach for creating a passive model is by perturbing either the poles or residues of the nonpassive model until a passive response is obtained [23]–[25]. These iterative methods are not guaranteed to converge. A different approach in [26] generates a passive RLC model by construction, rather than by perturbation. This method relies on a sufficient but not necessary condition for passivity enforcement on RLC networks. Therefore, the obtained result may not be optimum. The RC vector fitting approach presented in this paper is not iterative and is based on the enforcement of passivity with sufficient and necessary conditions. Hence, for the first time, it allows to efficiently calculate residues that provide an optimum fit in the least-squares sense. Existing macromodeling methods for RC networks are generally model order reduction techniques, such as [27], hence are not suitable as a vector fitting algorithm to generate an RC network from tabulated data.

In the first step of the RC vector fitting approach, real stable poles are used as the initial poles in the standard vector fitting algorithm. For the examples considered, this results in relocated poles that are also real and stable if the order of the model is not higher than necessary. Hence, if complex or nonstable poles are generated, the order of the model can be reduced, or such poles can be discarded.

In the second step, residues are extracted. The partial fraction expansion of the impedance of an RC network can be expressed as

\[Z_{RC} = a + \sum_{i=1}^{N} \frac{k_i}{s - p_i} \]

(5)

where the constant term \(a\) and all residues \(k_i\) are positive, whereas all poles \(p_i\) are negative. This is a necessary and sufficient condition for the extracted rational function to represent the impedance of an RC network. Hence, the constant term and residues can be extracted using nonnegative least squares to ensure that the resulting model will represent an RC network.

Admittance parameters can also be used directly; however, the residues will be negative for the admittance of an RC network (e.g., a series RC branch has an admittance of \(1/R - [1/R^2C]/[s + 1/RC]\)). In general, admittance of an RC network (i.e., \(Y_{RC}\)) has positive \(a\) but negative residues \(k_i\) [28].
Fig. 4. Admittance parameters related to TSV 2 showing good agreement to simulation.

Fig. 5. Voltage distribution between a signal and ground TSV including redistribution layers and a substrate contact.

A convenient method to fit the admittance of an RC network is through $\frac{Y_{RC}}{s}$ rather than Y_{RC} as

$$\frac{Y_{RC}}{s} = a + \sum_{i=1}^{N} \frac{k_i}{s - p_i}.$$ \hspace{1cm} (6)

Unlike Y_{RC}, the partial fraction expansion of $\frac{Y_{RC}}{s}$ has a positive constant term as well as positive residues. The positive constraint can again be enforced using non-negative least squares.

A. Numerical Example

An example for the application of RC vector fitting is shown in Fig. 5, which was simulated using COMSOL 3-D electric current simulator. The properties of the substrate for this simulation are the same as in the example of Fig. 3, except that circular TSVs with a radius of 1μm and pitch of 10μm have been used. The substrate thickness is 10μm. Because of the 3-D field coupling between the TSVs, wires on redistribution layers, and substrate contact; the conductance and capacitance have complicated behaviors that cannot be fit into an RC model using the model topology in Fig. 1.

The results are shown in Fig. 6. There is an excellent agreement using RC vector fitting, as opposed to the model fitting attempt, which shows large discrepancy. The RC vector fitting used only three poles to fit Y_{RC} in (6). For this example, standard least squares provided already positive terms, so there was no need to use non-negative least squares.

Hence, general RLC passivity enforcement techniques such as [26], which seek positive residues for all real poles, would fail to accurately generate an RC model.
IV. MULTIPORT RC VECTOR FITTING

Multiport RC vector fitting can be done similar to the one-port case that was described. Poles of the admittance function of a multiport RC network are also real and negative similar to the one-port case [27]. However, the passivity condition needs to be enforced on residue matrices and not on scalar residues. As such, the residue matrices a and k_i in (5) should be positive-semidefinite matrices (i.e., all eigenvalues should be positive). Once stable and real poles have been identified using standard vector fitting approach, fitting the residues becomes a least-squares problem with semidefinite constraints. Optimization problems of this type are convex and can be solved using semidefinite programming. The SeDuMi algorithm under the interface of the cvx package [29] has been used in this paper. In the following examples, Z_{RC} form as given in (5) was applied.

![Fig. 6. (a) Capacitance and (b) conductance of the configuration in Fig. 5. Fitting to a prespecified topology (model fitting) is not accurate; whereas RC vector fitting using three poles provides excellent accuracy.](image)

![Fig. 7. (a) Three signal TSVs + 1 ground TSV with a substrate tap (ground) in the center of the array. (b) Good fit on all impedance parameters using standard vector fitting (no passivity enforcement) with three poles. (Note that, because of symmetry, there are only four independent impedance parameters: $Z_{11}, Z_{12}, Z_{22}, Z_{23}$, assuming that TSV 1 is across the ground TSV).](image)
A. Numerical Examples

Consider the example shown in Fig. 7, which includes three signal TSVs and one ground TSV. The substrate is grounded with a square-shaped contact point in the center of the TSV array. First, a macromodel with three poles was created using the standard vector fitting algorithm. A good fit was achieved in all parameters as shown in Fig. 7.

The created model was observed to be nonpassive based on the passivity test in [30]. According to the test, passivity violation boundaries were calculated at 2.06×10^{11} and 2.63×10^{11} Hz. By sweeping the eigenvalues of the real part of the impedance matrix, the passivity violation was verified in this frequency range as shown in Fig. 8.

Next, a macromodel was generated by enforcing positive-definite residue matrices. The fitting is very good as shown in Fig. 9, and the network is guaranteed to be passive. The extracted rational function can be converted in a straightforward manner to an equivalent circuit model to do time-domain simulation of 3-D IC interconnects including nonlinear transistor models in SPICE. Since the generated model is passive, the macromodel does not cause instability in time-domain simulations.

To demonstrate the application of RC vector fitting on full-wave simulations, it is applied on a pair of TSVs that were considered in [18]. The 3-D full-wave simulator Ansys HFSS [31] is used on a similar configuration as in Fig. 7. In the HFSS simulation, only a signal and a ground TSV with a pitch of $10 \mu m$ are considered, which resulted in a two-port model for the TSV pair. The RC vector fitting approach provides good fit on the insertion loss obtained from HFSS as shown in Fig. 10. To apply the RC vector fitting approach, the simulated S-parameters were converted to the impedance matrix. This caused discrepancy in fitting the data because an excellent fit was observed originally on the impedance matrix elements, even though the S-parameters in Fig. 10 indicate some discrepancy. In this example, three poles were used. The standard vector fitting algorithm once again resulted in a nonpassive model, which was corrected using the RC vector fitting approach.

V. Conclusion

This paper presented two methodologies to extract RC parasitic models for interconnects in a 3-D IC. The first methodology is model fitting of a prescribed equivalent circuit model to provided simulation data. This approach is suitable for TSVs of arbitrary cross section with predominantly 2-D field distribution.

The second methodology is RC vector fitting, where the circuit topology is also flexible. Based on this method, an RC model can be developed to fit 3-D electromagnetic simulations including the effects of substrate contacts, active circuits, and redistribution layers. For one-port networks, non-negative least
squares is used, whereas multiport macromodels can be generated using semidefinite programming. It has been shown that, even though standard algorithms may provide an excellent fit to simulated data, passivity violations may occur and can be corrected using the presented approach to generate an RC model without sacrificing accuracy.

REFERENCES